10.1综合强化刷题 Day6

T1 排序

题目描述

小Z 有一个数字序列a1; a2; .... ; an,长度为n,小Z 只有一个操作:选

定p(1<p<n),然后把ap 从序列中拿出,然后再插⼊到序列中任意位置。

比如a 序列为1,2,4,5,3,p = 5,可以取出3,然后在任意位置插入,可

以变为1,2,3,4,5。

现在给你一个序列a,问你是否可以通过一次操作把整个序列从小到大

排好序(变成不降的)。

输入输出格式

输入格式:

 

第一行一个整数n,第二行空格隔开的n 个整数,代表a 序列。

 

输出格式:

 

如果可以n次操作可以排好序,输出”YES”,否则输出”NO”。

 

输入输出样例

输入样例#1:
5
1 2 4 5 3
输出样例#1:
YES

说明

对于30% 的数据,满足n <=1000。

对于60% 的数据,满足n <=10^5。

对于100% 的数据,满足n <=10^6; 1 <=ai <=10^6。

 

一个大模拟、、挺水的(具体模拟过程看代码吧)

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 1000010
using namespace std;
int n,s,a[N],b[N];
int read()
{
    int x=0,f=1; char ch=getchar();
    while(ch<'0'||ch>'9') {if(ch=='-')f=-1; ch=getchar();}
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x*f;
}
int main()
{
//    freopen("sort.in","r",stdin);
//    freopen("sort.out","w",stdout);
    n=read();
    for(int i=1;i<=n;i++)
     a[i]=read(),b[i]=a[i];
    for(int i=2;i<=n;i++)
    {
        if(b[i]>=b[i-1]) continue;
        s++;
        if(b[i-2]>b[i]&&b[i-2]>b[i+1]) {printf("NO"); return 0;}
        if(b[i-1]>b[i+1]) b[i]=b[i-2];
        else b[i]=b[i-1];
        if(s>1) {printf("NO"); return 0;}
    }
    printf("YES");
    return 0;
}
AC代码

 

T2 同余方程组

题目描述

求关于x 的同余方程组

x%a1 = b1
x%a2 = b2
x%a3 = b3
x%a4 = b4
的大于等于0 的最小整数解。

输入输出格式

输入格式:

 

一行8 个整数,表示a1; b1; a2; b2; a3; b3; a4; b4。

 

输出格式:

 

一行一个整数,答案除以p 的余数。

 

输入输出样例

输入样例#1:
2 0 3 1 5 0 7 3
输出样例#1:
10

说明

对于30% 的数据,ai <=40, 保证ai 均为素数。

对于60% 的数据,1 <=ai <=10^3, 保证ai 均互素。

对于100% 的数据,0 <= bi < ai; 1 <=ai <= 10^3。

 

中国剩余定理裸题

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define N 5
#define ll long long 
using namespace std;
ll n,m[N],a[N],m1,e;
ll read()
{
    ll x=0,f=1; char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1; ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0'; ch=getchar();}
    return x*f;
}
ll exgcd(ll a,ll b,ll &x,ll &y)
{
    if(b==0)
    {
        x=1,y=0;
        return a;
    }
    ll r=exgcd(b,a%b,x,y),tmp;
    tmp=x,x=y,y=tmp-a/b*y;
    return r;
}
ll crt()
{
    ll a1=a[1],a2,m2,d,c;m1=m[1];
    for(ll i=2;i<=n;++i)
    {
        a2=a[i],m2=m[i];
        c=a2-a1;ll x=0,y=0;
        d=exgcd(m1,m2,x,y);
        if(c%d) return  -1;
        x=x*c/d;
        int mod=m2/d;
        x=(mod+x%mod)%mod;
        a1+=m1*x;m1*=mod;
    }
    return a1;
}
int main()
{
//    freopen("mod.in","r",stdin);
//    freopen("mod.out","w",stdout);
    n=4;
    for(int i=1;i<=n;i++) 
     m[i]=read(),a[i]=read();
    printf("%lld\n",crt());
    return 0;
}
Ac代码

 

 

T3 字符串

题目描述

如果把一个字符串从头到尾翻转后和原字符串相等,我们称之为回文串,比如“aabaa”、“())(”、“2017102”。

如果一个字符串存在两个出现过的字母出现的次数相等,我们称之为好

的字符串。

现在给一个由小写字母组成的字符串,问在这个字符串的所有连续的串

中,好的回文串有多少个。(两个相同的回文串出现在不同位置算多次)。

输入输出格式

输入格式:

 

一行一个小写字母组成的字符串。

 

输出格式:

 

一行一个整数,表示答案。

 

输入输出样例

输入样例#1:
abcbaabcba
输出样例#1:
6
【样例解释】
abcba s[1..5] a,b 出现次数相等
baab s[4..7] a,b 出现次数相等
cbaabc s[3..8] a,b 出现次数相等
bcbaabcb s[2..9] a,c 出现次数相等
abcbaabcba s[1..10] a,b 出现次数相等
abcba s[6..10] a,b 出现次数相等

说明

len 表示字符串长度。

对于30% 的数据, len <=10^2。

对于60% 的数据, len <= 10^3。

对于100% 的数据,1 <= len <= 10^4。

 

考试的时候,有位大智障竟然用(s[k]==s[j])!=0来判断,s[k]==s[j]&&s[k]!=0&&s[j]!=0  (捂脸、、)竟然在while里面先让b++,e--在统计这两个地方的每个字符的个数、、、(智障啊、、)

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 10010
using namespace std;
bool flag;
char ch[N];
int n,b,e,ans,s[N];
int main()
{    
    cin>>ch;n=strlen(ch);
    for(int l=3;l<n;l++)
     for(int i=0;i<n-l;i++)
     {
         b=i,e=l+i;flag=false;
         memset(s,0,sizeof(s));
         while(b<=e)
         {
               if(ch[e]!=ch[b]) {flag=true;break;}
               if(b==e) s[ch[e]-'a']++;
               else s[ch[e]-'a']+=2;
               b++,e--;
         }
         for(int j=0;j<26;j++)
         {
            if(flag) break;
            for(int k=0;k<26;k++)
              if(s[j]&&s[k]&&s[j]==s[k]&&j!=k) {ans++,flag=true;break;}
         } 
    }
    printf("%d",ans);  
    return 0;
}
30分暴力

气死我了、、玄学错误,一个枚举长度跟左端点,一个枚举左右端点,时间复杂度完全一样,结果一个TLE30分,另一个TLE60分!!!!!!!!

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 10010
using namespace std;
char ch[N];
int n,b,e,ans,s[N],tmp[N];
bool pd(int b,int e)
{
    memset(s,0,sizeof(s));
    while(b<=e)
    {
        if(ch[e]!=ch[b]) return false;
        if(b==e) s[ch[e]-'a']++;
        else s[ch[e]-'a']+=2;
        b++,e--;
    }
    sort(s,s+26);
    for(int i=24;i>=0;--i)
     if(s[i]&&s[i]==s[i+1])  return true;
    return false;
}
int main()
{    
    cin>>ch;n=strlen(ch);
    for(int l=3;l<n;++l)
     for(int i=0;i<n-l;++i)
     {
         b=i,e=l+i;
         if(pd(b,e)) ans++;
    }
    printf("%d",ans);  
    return 0;
}
枚举长度跟左端点 30分
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 10010
using namespace std;
char ch[N];
int n,ans,s[30];
bool pd(int b,int e)
{
    memset(s,0,sizeof(s));
    while(b<=e)
    {
        if(ch[e]!=ch[b]) return false;
        if(b==e) s[ch[e]-'a']++;
        else s[ch[e]-'a']+=2;
        b++,e--;
    }
    sort(s,s+26);
    for(int i=24;i>=0;--i)
     if(s[i]&&s[i]==s[i+1])  return true;
    return false;
}
int main()
{    
    cin>>ch;n=strlen(ch);
    for(int b=0;b<n-3;++b)
     for(int e=b+3;e<n;++e)
         if(pd(b,e)) ans++;
    printf("%d",ans);  
    return 0;
}
枚举左右端点 60分

什么?!  s数组开大了?! 开小点就是60?!!!

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 10010
using namespace std;
char ch[N];
int n,b,e,ans,s[30];
bool pd(int b,int e)
{
    memset(s,0,sizeof(s));
    while(b<=e)
    {
        if(ch[e]!=ch[b]) return false;
        if(b==e) s[ch[e]-'a']++;
        else s[ch[e]-'a']+=2;
        b++,e--;
    }
    sort(s,s+26);
    for(int i=24;i>=0;--i)
     if(s[i]&&s[i]==s[i+1])  return true;
    return false;
}
int main()
{    
    cin>>ch;n=strlen(ch);
    for(int l=3;l<n;++l)
     for(int i=0;i<n-l;++i)
     {
         b=i,e=l+i;
         if(pd(b,e)) ans++;
    }
    printf("%d",ans);  
    return 0;
}
枚举长度跟左端点 60分
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <map>
using namespace std;

typedef unsigned long long ULL;
typedef long long LL;

char s[10005];
ULL h[10005],rh[10005],pw[10005];
int L;

ULL hs(int l,int r){
    return h[r]-h[l-1]*pw[r-l+1];
}
ULL rhs(int l,int r){
    return rh[l] - rh[r+1]*pw[r-l+1];
}
struct N{
    int a[26];
    bool ok(){
        int b[26];
        for(int i=0;i<26;i++) b[i]=a[i];
        sort(b,b+26);
        for(int i=0;i<25;i++){
            if(b[i]>0&& b[i] == b[i+1]) return true;
        }
        return false;
    }
    void clear(){
        memset(a,0,sizeof a);
    }
};
LL ans=0;
map<ULL,LL> num;
map<ULL,N> A;
void solve_odd(){
    for(int i=1;i<=L;i++){
        int l = 1,r = min(i,L-i+1)+1;
        while(r-l>1){
            int mid = (l+r)/2;
            if(hs(i-mid+1,i+mid-1)== rhs(i-mid+1,i+mid-1)) l=mid;
            else r=mid;
        }
        int p=l;
        int tmp = p;
        while(tmp>=1&&num.find(hs(i-tmp+1,i+tmp-1))==num.end()) tmp--;
        LL sum = 0;
        N st;
        st.clear();
        if(tmp>=1){
            sum=num[hs(i-tmp+1,i+tmp-1)];
            st = A[hs(i-tmp+1,i+tmp-1)];
        }
        while(tmp<p){
            st.a[s[i+tmp]-'a']+= (tmp == 0?1:2);
            if(st.ok()) sum++;
            num[hs(i-tmp,i+tmp)] = sum;
            A[hs(i-tmp,i+tmp)] = st;
            tmp++;
        }
        ans+=sum;
        // printf("# %d %lld\n",i,sum);
    }
}
void solve_even(){
    A.clear();
    num.clear();
    for(int i=1;i<L;i++){
        // printf("### %d\n",i);
        int l = 1,r = min(i,L-i)+1;
        while(r-l>1){
            int mid = (l+r)/2;
            if(hs(i-mid+1,i+mid)== rhs(i-mid+1,i+mid)) l=mid;
            else r=mid;
        }
        int p=l;
        int tmp = p;
        while(tmp>=1&&num.find(hs(i-tmp+1,i+tmp))==num.end()) tmp--;
        LL sum = 0;
        N st;
        st.clear();
        // printf("## %d\n",p);
        if(tmp>=1){
            sum=num[hs(i-tmp+1,i+tmp)];
            st = A[hs(i-tmp+1,i+tmp)];
        }
        while(tmp<p){
            // printf("# %d %lld\n",tmp,sum);
            st.a[s[i+tmp+1]-'a']+= 2;
            if(st.ok()) sum++;
            num[hs(i-tmp,i+tmp+1)] = sum;
            A[hs(i-tmp,i+tmp+1)] = st;
            tmp++;
        }
        ans+=sum;
        // printf("# %d %lld\n",i,sum);
    }
}

int main(){
    freopen("str.in","r",stdin);
    freopen("str.out","w",stdout);
    scanf("%s",s+1);
    L=strlen(s+1);
    s[0]='#';
    pw[0]=1;
    for(int i=1;i<=L;i++) pw[i] = pw[i-1]*13131 ;
    for(int i=1;i<=L;i++) h[i] = h[i-1]*13131 + s[i];
    for(int i=L;i>=1;i--) rh[i] = rh[i+1]*13131 + s[i];

    // printf("%llu %llu",hs(1,3),rhs(1,3));
    
    solve_odd();
    solve_even();
    printf("%lld\n",ans);
    fclose(stdout);
    return 0;
}
标称(字符串+二分)

 

转载于:https://www.cnblogs.com/z360/p/7631732.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值