规格选择_如何选择耳机的规格参数

在购买耳机时很多人被规格搞得头昏眼花,明明只是耳机而已规格那么多,而且一定要搞个专有名词让人觉得很专业、很难懂、好像很厉害的感觉….

所以这篇文章是带您快速了解耳机规格,让您在选购耳机时不会被规格搞得晕头转向不知道该怎么选!

目录
频率响应(Frequency Response)
阻抗(Impedance)
灵敏度(Sensitivity)
导线类型

频率响应(Frequency Response)

频率响应以赫兹(Hz)为单位

ea904217d57ac2a889ec4fe81c3b4bcd.png

频率响应一般是指耳机能够发出声音的范围,一般来说人耳能听到的声音大约是 20Hz ~ 20,000Hz,挑选耳机时数值则是越高越好

一般耳机的频率范围落在 10 Hz 到 25,000Hz,高阶耳机可以达5Hz~60,000Hz,但这其实都超出一般人的听力范围。

当频率响应以图形形式给出时,它表示两种不同的测量值 。

一,它显示了由耳机再现的频率范围,从最低到最高。

二,它显示了每个频率下耳机的相对输出电平。

阻抗(Impedance)

单位为欧姆( Ohms,希腊符号为 Ω),阻抗越高,流动的电流越少。

耳机的阻抗范围在 8 ~ 600 欧姆间甚至更高,阻抗高低有差吗?

您是否有这样的经验呢?将高阻抗耳机插在手机或随身听上,听到的声音却很小声,就算音量调到最高了,音量还是很弱?

这不是耳机或手机有问题或坏掉了,是因为阻抗高的耳机需要更大的功率才能推动它,没有搭配适当的音响器材来推动,这个时候就需要用耳机扩大机(耳扩)来听歌了。

a0efe15b77f0594882b04cc45da5a644.png

如何评估耳机阻抗是否适合你:

只需要把你的播放设备阻抗乘以8,就等于适合的耳机阻抗值。

例:假设你的拨放器的阻抗是8 欧姆,那你的耳机阻抗最好是64 欧姆,但这并不表示阻抗64欧姆的耳机比阻抗低的耳机好,阻抗并不是耳机好坏的标准,只是判断播放设备跟你的耳机合不合适。

耳机阻抗越小越容易驱动出足够的音量;阻抗值越高,噪声越低。所以在选择耳机阻抗的高低时,重要的是要取得平衡。

所以购买耳机前必须要先确认规格是否相符喔!!

灵敏度(Sensitivity)

灵敏度又称声压、音压或感度,单位为dB/mW(分贝/毫瓦)。

灵敏度是指在一定的输入功率下,耳机会有多大音量产生,灵敏度越高的耳机代表需要的功率越小,所以灵敏度和阻抗呈反比,稍微调高音量就很大声,很吵!

如果耳机上头写105dB/mW,就代表1mW(毫瓦)的功率能发出105dB(分贝)的声音强度,简单来说灵敏度越高,收到的声音就越大声。

导线类型

导线类型就是指耳机线材质的部分,绝大多数的耳机线材都是使用铜的材质为主

因为铜线价格便宜,而且低频稳重、中音扎实

通常场收都会标记 「无氧铜」,通常在前面会标上等级

例如 : N4无氧铜纯度为99.99%

N5无氧铜纯度为99.999%

N6无氧铜纯度为99.9999% ….以此类推

如果你的耳机不可以换线的话,就可以在购买前注意一下导线的材质

如果是可以换线的耳机,则可以在选购的时候多多比较不同材质之间的差异性。

机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。 机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值