数据结构------线段树2:单点修改与区间询问

上一次我们讲到线段树的概念和建树,今天,我们来讲线段树的单点修改与区间询问。

1.单点修改

单点修改会改变它所在子树的节点,当你修改了叶节点后,一定要更新其祖先的值。

code:

void up(int p){
    s[p] = s[p * 2] + s[p * 2 + 1];
}//向上更新节点
void modify(int p, int l, int r, int x, int v){//p节点编号,l,r区间,v修改值
    if (l == r){
        s[p] += v;
        return;
    }
    int mid = (l + r) / 2;
    if (x <= mid)
        modify(p * 2, l, mid, x, v);//左子树
    else
        modify(p * 2 + 1, mid + 1, r, x, v);//右子树
    up(p);
}

其实这就是一个模板,记一下,对你有好处!

 

2.区间询问

一般来说,区间询问是以这样的形式出现滴:

给定一个区间 [ l , r ] ,求区间的和。

上图QAQ

线段树:我又回来啦!

 

此时,询问 [ 3 , 6 ]的最小值。

先找3所在的区间 [ 1 , 5 ] ,接着在搜左子树,右子树。直到搜到3。

之后在3~6的区间中,[ 4 , 5 ]是一个节点,直接返回区间最小值,不必往下搜,再到右子树上去搜6,找到总区间最小值。

 1 int query(int p, int l, int r, int x, int y)
 2 {
 3     if (x <= l && r <= y) return s[p];//若该结点被查询区间包含
 4     int mid = (l + r) / 2, res = 0;
 5     if (x <= mid) 
 6     res += query(p * 2, l, mid, x, y);
 7     if (y > mid) 
 8     res += query(p * 2 + 1, mid + 1, r, x, y);
 9     return res;
10 }

这要用到之前的修改

 

这就是线段树的单点修改与区间查询

自己背一背模板,rp++。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值