Virtual Judge——区间询问

这篇文章揭秘了如何通过巧妙地利用对称性解决VirtualJudge中的区间询问问题,指出当n为整数时,左边界-l+1和右边界n相加等于n的解决方案。作者分享了核心思路和代码实例,适合寻找非传统解法的编程爱好者。
摘要由CSDN通过智能技术生成

Virtual Judge——区间询问

题目:

给你一个整数 n。 你需要找到两个整数 l和 r 满足l + (l + 1) + … + (r - 1) + r = =n.

Input
第一行包括一个整数t (1<=t <=≤ 10000) —— 测试样例的数量.
每个测试样例的第一行仅包括一个整数 n (1 <=n <= 1*10^18)

Output
对于每个测试样例,输出两个整数 l 和 r .

-10^18 <= l < r <= 10^18
满足l + (l + 1) + … + (r - 1) + r = =n.
可以证明答案总是存在的。如果有多个答案,请打印任意一个。

Example
Input
4
1
3
6
3000000000000

Output
0 1
1 2
1 3
999999999999 1000000000001

思路:

总结:就像脑筋急转弯一样
非常特殊的是, l 和 r ,它们!都可以取负数!
假如有一列连续的整数,-2、-1、0、1、2、3,那么从-2一直加到3就是3,因为从-2到2都是关于0对称的。

所以,就很简单啦!
假设每一个样例输入的数为n
区间的左边界就是-n+1,有边界就是n,这样加起来完全就是n
(所以也告诉我们…有时候不要太被样例限制,可以不按它那个方式加起来)
代码如下:

#include<stdio.h>
#include<iostream>
using namespace std;
int main()
{
    int n;
    cin>>n;
    while(n--)
    {
        long long temp;
        cin>>temp;
        cout<<-(temp-1)<<" "<<temp<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值