(3)绘制大端、小端齿廓渐开线。MATLAB软件不仅擅长处理数组的各种运算,而且其图形显示功能强大,适合于弧齿锥齿轮的渐开线的建立。因此将如下数据输入到MATLAB中,绘制渐开线:
将MATLAB生成的渐开线导人SolidWorks中,步骤如下:① 用assignin函数将要保存的变量返回到MATLAB的workplace中,双击workplace中的变量,将数据全部复制后粘贴到记事本中;② 打开SolidWorks中的曲线按钮,通过X,Y,Z的曲线选项,点击后出现曲线表格,选文件类型为Text File,找到渐开线文件(xianl,xian2);③ 点打开,又回到曲线文件表格,点确定,渐开线曲线即进入SolidWorks。值得注意的是虽然Z值为零,但SolidWorks仍认为此曲线是空间曲线,因此在平面上使用时,可用转换实体工具将其转化为平面曲线。将渐开线移动到合适的位置后,将其沿着Z轴旋转角度A1。
建立通过大端渐开线和大端基圆的点4,再穿过大端中心线和点4来建立基准面4,然后将基准面4旋转角度A2来建立基准面5,作为镜像平面来镜像大、小端渐开线。
(4)创建齿坯实体、扫描轨迹和齿廓线。在前视基准面内绘制齿坯曲线,旋转成齿坯实体;根据刀具半径、螺旋角和齿轮的旋转方向绘制刀盘圆线和夹角35°切线来绘制扫描轨迹,如图3所示。
图3 扫描轨迹和齿廓图
(5)单击SolidWorks“特征”工具栏中的“扫描”绘制出一个齿,再通过“旋转”工具得到弧齿锥齿轮的完整模型,如图4所示。
图4 齿轮完整模型
2 结论
本文采用MATLAB来绘制弧齿锥齿轮的大端和小端齿面的齿廓线,将MATLAB和SolidWorks相结合使得建立的弧齿锥齿轮模型更加精确,为后续的有限元分析奠定了基础。
责任编辑:郝秋红