实验4 图像的二维傅里叶变换和频谱
一、实验目的
通过本实验使学生掌握使用MATLAB 进行二维傅里叶变换的方法,加深对二维傅里叶变换的理解和图像频谱的理解。
二、实验原理
本实验是基于数字图像处理课程中的二维傅里叶变换理论来设计的。
本实验的准备知识:第四章频域图像增强中的一维傅里叶变换和二维傅里叶变换,频域图像增强的步骤,频域滤波器。
实验用到的基本函数:
一维傅里叶变换函数: fft,
一维傅里叶反变换函数:ifft
频谱搬移函数:fftshift
二维傅里叶变换函数:fft2
二维傅里叶反变换函数:ifft2
绘图函数:imshow, mesh
【说明,如对上述函数的使用方法有疑问,请先用help命令查询。建议先用help命令查询器应用方法,再做具体实验内容。】
例:计算图像 f的频谱并显示
F=fft2(f);
S=abs(F); %求幅度
imshow(S,[]);%显示图像幅度频谱
Fc=fftshift(F); %将图像频谱原点移动到中心显示
imshow(abs(Fc));
三、实验内容
(一)一维傅里叶变换的实现和分析
1、生成一个一维向量,x=[1 2 3 4 5 6 7 8]; 计算该向量的傅里叶变换,并由傅里叶变换求反变换,验证结果。
2在时间域中将x乘以(-1)n,计算其傅里叶变换,实现傅里叶变换的平移性质使用fftshift函数,实现频谱的平移。
(二)二维傅里叶变换的实现和分析
产生如图所示图象 f1(x,y)(64×64 大小,中间亮条宽 16,高 40,居中,暗处=0,亮处=255),用 MATLAB 中的 fft2 函数求其傅里叶变换,要求:
1、同屏显示原图f1和FFT(f1)的幅度谱图;
2、若令 f2(x,y)=(-1)x+y f1(x,y),重复过程 1,比较二者幅度谱的异同,简述理由;
3、若将 f2(x,y)顺时针旋转 90 度得到 f3(x,y),试显示 FFT(f3)的幅度谱,并与
FFT(f2)的幅度谱进行比较。
(三)任意图像的频谱显示任意图像的频谱显示
1、读入图像lenagray.tif,计算该图像的频谱,并将频谱原点移到中心位置显示。
2、读入图像rice.tif,计算该图像的频谱,并将频谱原点移到中心位置显示。
四、实验步骤
(一)一维傅里叶变换的实现和分析