matlab二维傅里叶变化并得到频谱,图像的二维傅里叶变换和频谱

实验4 图像的二维傅里叶变换和频谱

一、实验目的

通过本实验使学生掌握使用MATLAB 进行二维傅里叶变换的方法,加深对二维傅里叶变换的理解和图像频谱的理解。

二、实验原理

本实验是基于数字图像处理课程中的二维傅里叶变换理论来设计的。

本实验的准备知识:第四章频域图像增强中的一维傅里叶变换和二维傅里叶变换,频域图像增强的步骤,频域滤波器。

实验用到的基本函数:

一维傅里叶变换函数: fft,

一维傅里叶反变换函数:ifft

频谱搬移函数:fftshift

二维傅里叶变换函数:fft2

二维傅里叶反变换函数:ifft2

绘图函数:imshow, mesh

【说明,如对上述函数的使用方法有疑问,请先用help命令查询。建议先用help命令查询器应用方法,再做具体实验内容。】

例:计算图像 f的频谱并显示

F=fft2(f);

S=abs(F); %求幅度

imshow(S,[]);%显示图像幅度频谱

Fc=fftshift(F); %将图像频谱原点移动到中心显示

imshow(abs(Fc));

三、实验内容

(一)一维傅里叶变换的实现和分析

1、生成一个一维向量,x=[1 2 3 4 5 6 7 8]; 计算该向量的傅里叶变换,并由傅里叶变换求反变换,验证结果。

2在时间域中将x乘以(-1)n,计算其傅里叶变换,实现傅里叶变换的平移性质使用fftshift函数,实现频谱的平移。

(二)二维傅里叶变换的实现和分析

产生如图所示图象 f1(x,y)(64×64 大小,中间亮条宽 16,高 40,居中,暗处=0,亮处=255),用 MATLAB 中的 fft2 函数求其傅里叶变换,要求:

1、同屏显示原图f1和FFT(f1)的幅度谱图;

2、若令 f2(x,y)=(-1)x+y f1(x,y),重复过程 1,比较二者幅度谱的异同,简述理由;

3、若将 f2(x,y)顺时针旋转 90 度得到 f3(x,y),试显示 FFT(f3)的幅度谱,并与

FFT(f2)的幅度谱进行比较。

(三)任意图像的频谱显示任意图像的频谱显示

1、读入图像lenagray.tif,计算该图像的频谱,并将频谱原点移到中心位置显示。

2、读入图像rice.tif,计算该图像的频谱,并将频谱原点移到中心位置显示。

四、实验步骤

(一)一维傅里叶变换的实现和分析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值