【355】线性代数相关概念

 

 术语解释
 零矩阵所有元素均为 0。
 n 阶矩阵矩阵的行、列数都是 n。也称 n 阶方阵。
 上三角矩阵在 n 阶矩阵中,若主对角线左下侧的元素全为 0。
 下三角矩阵在 n 阶矩阵中,若主对角线右上侧的元素全为 0。
 对角矩阵主对角线两侧的元素全为 0。
 单位矩阵主对角线上元素全为 1 的对角矩阵。
 负矩阵$(-1)A = -A$
 转置矩阵矩阵 $A$ 的行与列互换所得的矩阵。
 对称矩阵方阵 $A$ 满足 $A = A^T$
 逆矩阵$AB=BA=E$
 伴随矩阵$A^*$
 n 维行向量1 × n 矩阵(只有一行)
 n 维列向量n × 1 矩阵(只有一列)
 非奇异矩阵行列式非零的方阵,有逆矩阵,非奇异矩阵和可逆矩阵是等价的概念。
 奇异矩阵行列式等于零的矩阵,不可逆矩阵。
 如果矩阵 $A$ 的所有子式中,不等于零的子式的最高阶数为 $r$,则 $r$ 称为矩阵 $A$ 的秩,记为 $R(A)=r$ 或 $秩(A) = r$ 
 满秩矩阵如果R(A) = min(m, n),则称为满秩矩阵
 內积、点积、点乘、数量积一个行向量乘以一个列向量称作向量的内积,又叫作点积,结果是一个数;向量的点乘,也叫向量的内积、数量积,对两个向量执行点乘运算,就是对这两个向量对应位一一相乘之后求和的操作,点乘的结果是一个标量。
参考:矩阵外积与内积
表示形式 G_{ij}=\langle v_{i},v_{j}\rangle
 外积、一个列向量乘以一个行向量称作向量的外积,外积是一种特殊的克罗内克积,结果是一个矩阵,
 Gram 矩阵、格拉姆矩阵
G(x_{1},\dots ,x_{n})={\begin{vmatrix}\langle x_{1},x_{1}\rangle &\langle x_{1},x_{2}\rangle &\dots &\langle x_{1},x_{n}\rangle \\\langle x_{2},x_{1}\rangle &\langle x_{2},x_{2}\rangle &\dots &\langle x_{2},x_{n}\rangle \\\vdots &\vdots &\ddots &\vdots \\\langle x_{n},x_{1}\rangle &\langle x_{n},x_{2}\rangle &\dots &\langle x_{n},x_{n}\rangle \end{vmatrix}}.
   
   
   
   

转载于:https://www.cnblogs.com/alex-bn-lee/p/10302144.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值