【ZH奶酪】如何用Python实现编辑距离?

1. 什么是编辑距离?

编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。一般来说,编辑距离越小,两个串的相似度越大。

举个例子,给定 2 个字符串str_a=“yes”, str_b=“yeah”. 编辑距离是将 str_a 转换为 str_b 的最少操作次数,操作只允许如下 3 种:

  • 插入一个字符,例如:abc -> ab
  • 删除一个字符,例如:ab -> abc
  • 替换一个字符,例如:abc -> abd

那么从str_a到str_b的转换过程总共需要两步:yes > yeas > yeah 或者 yes > yea > yeah,所以str_a和str_b的编辑距离为2。

2. 如何计算编辑距离?

假设字符串a, 共m位,从a[1]a[m], 字符串b, 共m位, 从b[1]b[m]. 用二维数组D来保存由ab的编辑距离,其中D[i][j]表示字符串a[1]-a[i]转换为b[1]-b[i]的编辑距离.

2.1 递归算法

递归的思想需要可以将问题拆解,假设a[i]b[j]分别是字符串ab的最后一位,那么要把问题拆解,有三种选择:

  • a[i-1], b[j],即用a[1:i-1]继续和b[1:j]比较,删除了a[i],需要额外一步代价;
  • a[i-1], b[j-1],即用a[1:i-1]继续和b[1:j-1]比较,如果a[i]b[j]相等,那么无需额外代价,否则需要额外一步代价将a[i]修改为b[j]
  • a[i], b[j-1],即用a[1:i]继续和b[1:j-1]比较,删除了b[j],需要额外一步代价;

换一种说法,也就是说具体要拆解为哪一种,需要考虑a[i]b[j]的比值,以及这三种方法的代价。即如下递归规律:

  • a[i]等于b[j]时,比如 abcbbc,那么D[i][j] = D[i-1][j-1], 即等于abbb的编辑距离;
  • a[i]不等于b[j]时,D[i][j]等于如下3项的最小值:
    1. D[i-1][j] + 1,即删除a[i], 比如abcd -> abc的编辑距离 = abc -> abc 的编辑距离 + 1
    2. D[i][j-1] + 1,即插入b[j], 比如ab -> abc 的编辑距离 = abc -> abc 的编辑距离 + 1
    3. D[i-1][j-1] + 1,将a[i]替换为b[j], 比如abd -> abc 的编辑距离 = abc -> abc 的编辑距离 + 1

那么递归边界如何设定呢?

递归边界就是a[1:i]或者b[1:j]'为空的时候,即:

a[i][0] = i, b字符串为空,那么需要将a[1]-a[i]全部删除,所以编辑距离为i
a[0][j] = j, a字符串为空,那么需要向a插入b[1]-b[j],所以编辑距离为j

Python代码:

def recursive_edit_distance(str_a, str_b):
  if len(str_a) == 0:
    return len(str_b)
  elif len(str_b) == 0:
    return len(str_a)
  elif str_a[len(str_a)-1] == str_b[len(str_b)-1]:
    return recursive_edit_distance(str_a[0:-1], str_b[0:-1])
  else:
    return min([
      recursive_edit_distance(str_a[:-1], str_b),
      recursive_edit_distance(str_a, str_b[:-1]),
      recursive_edit_distance(str_a[:-1], str_b[:-1])
    ]) + 1
str_a = "yes"
str_b = "yeah"
print(recursive_edit_distance(str_a, str_b))
# output is : 2

算法分析:该算法逻辑清晰,可读性较高,但是对于计算机而言却很不友好,时间复杂度高,随字符串长度呈指数级增长,而且递归算法的通病就是调用栈太深的时候,需要占用较多计算机资源。

2.2 动态规划

如果熟悉动态规划的同学,从上边的思路可以很容易推理出动态规划的递推公式:

if a[i] == b[j]:
    edit_distance(a[i], b[j]) = edit_distance(a[i-1], b[j-1]) 
if a[i] != b[j]:
    edit_distance(a[i], b[j]) = MIN (
        edit_distance(a[i-1], b[j]) + 1,   # 从a中删除a[i]
        edit_distance(a[i], b[j-1]) + 1,  # 向a中插入b[j]
        edit_distance(a[i-1], b[j-1]) + 1  # 将a[i]修改为b[j]
    )

转换为Python,也就是用二维数组D来记录从a向b的转换过程:

def edit_distance(str_a, str_b):
  if str_a == str_b:
    return 0
  if len(str_a) == 0:
    return len(str_b)
  if len(str_b) == 0:
    return len(str_a)
# 初始化dp矩阵
  dp = [[0 for _ in range(len(str_a) + 1)] for _ in range(len(str_b) + 1)]
# 当a为空,距离和b的长度相同
  for i in range(len(str_b) + 1):
    dp[i][0] = i
# 当b为空,距离和a和长度相同
  for j in range(len(str_a) + 1):
    dp[0][j] = j
# 递归计算
  for i in range(1, len(str_b) + 1):
    for j in range(1, len(str_a) + 1):
      dp[i][j] = dp[i-1][j-1]
      if str_a[j-1] != str_b[i-1]:
        dp[i][j] = min([dp[i-1][j-1], dp[i-1][j], dp[i][j-1]]) + 1
  return dp[len(str_b)][len(str_a)]
str_a = "yes"
str_b = "yeah"
print(edit_distance(str_a, str_b))
# output is : 2

2.3 动态规划, 优化空间复杂度

上边的算法中用二维数组来存储从a到b的距离,从递推公式来看,其实每一步dp[i][j]的计算只依赖a[i]和b[j]是否相等以及矩阵中的三个值

  • 左边的值,left = dp[i-1][j]
  • 左上角的值,left_up = dp[i-1][j-1]
  • 上边的值,up = dp[i][j-1]

其实我们可以用一维数组来达到上述目的,具体可以看Python代码:

def edit_distance(str_a, str_b):
  if str_a == str_b:
    return 0
  if len(str_a) == 0:
    return len(str_b)
  if len(str_b) == 0:
    return len(str_a)
  dp = [x for x in range(len(str_b) + 1)]
  for i in range(1, len(str_a) + 1):
    # 注意每次left_up和dp[0]的初始化
    left_up = i - 1
    dp[0] = i # 当前轮最左的left
    for j in range(1, len(str_b) + 1):
      up= dp[j]  # j是上一轮的值,即up
      left = dp[j-1]  # j-1是当前轮的值,即left
      if str_a[i-1] == str_b[j-1]:
        dp[j] = left_up
      else:
        dp[j] = min([left, up, left_up]) + 1
      left_up = up # 每移动一步,上一轮的up就变成了left_up
  return dp[len(str_b)]
str_a = "yes"
str_b = "yeah"
print(edit_distance(str_a, str_b))
# output is : 2

2.4 打印编辑过程

def edit_distance_Omn(str_a, str_b):
  if str_a == str_b:
    return 0
  if len(str_a) == 0:
    return len(str_b)
  if len(str_b) == 0:
    return len(str_a)
  dp = [[0 for _ in range(len(str_a) + 1)] for _ in range(len(str_b) + 1)]
  for i in range(len(str_b) + 1):
    dp[i][0] = i
  for j in range(len(str_a) + 1):
    dp[0][j] = j
  for i in range(1, len(str_b) + 1):
    for j in range(1, len(str_a) + 1):
      dp[i][j] = dp[i-1][j-1]
      if str_a[j-1] != str_b[i-1]:
        dp[i][j] = min([dp[i-1][j-1], dp[i-1][j], dp[i][j-1]]) + 1

  #打印完整路径矩阵(这一步非必要)
  for i in range(len(str_b) + 1):
    for j in range(len(str_a) + 1):
      print dp[i][j],
    print
  # 准备倒着查询编辑路径,从右下角开始
  i , j = len(str_b), len(str_a)
  op_list = []  # 记录编辑操作
  while i > 0 and j > 0:
    if dp[i][j] == dp[i-1][j-1]:
      op_list.append("keep [ {} ]".format(str_b[i-1]))
      i, j = i-1, j-1
      continue
    if dp[i][j] == dp[i-1][j]  + 1:
      op_list.append("remove [ {} ]".format(str_b[i-1]))
      i, j = i-1, j
      continue
    if dp[i][j] == dp[i-1][j-1] + 1:
      op_list.append("change [ {} ] to [ {} ]".format(str_b[i-1], str_a[j-1]))
      i, j = i-1, j-1
      continue
    if dp[i][j] == dp[i][j-1] + 1:
      op_list.append("insert [ {} ]".format(str_a[j-1]))
      i, j = i, j-1
  for i in range(len(op_list)):
    print op_list[len(op_list)-i-1]
  return dp[len(str_b)][len(str_a)]
str_a = "yesxxxxxx"
str_b = "yeahxxxxxhh"
print(edit_distance(str_a, str_b))

输出

0 1 2 3 4 5 6 7 8 9
1 0 1 2 3 4 5 6 7 8
2 1 0 1 2 3 4 5 6 7
3 2 1 1 2 3 4 5 6 7
4 3 2 2 2 3 4 5 6 7
5 4 3 3 2 2 3 4 5 6
6 5 4 4 3 2 2 3 4 5
7 6 5 5 4 3 2 2 3 4
8 7 6 6 5 4 3 2 2 3
9 8 7 7 6 5 4 3 2 2
10 9 8 8 7 6 5 4 3 3
11 10 9 9 8 7 6 5 4 4
keep [ y ]
keep [ e ]
change [ a ] to [ s ]
change [ h ] to [ x ]
keep [ x ]
keep [ x ]
keep [ x ]
keep [ x ]
keep [ x ]
remove [ h ]
remove [ h ]
4
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值