自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(90)
  • 资源 (1)
  • 收藏
  • 关注

原创 LLMs 系列实操科普(3)

LLMs 系列实操科普(2)

2025-06-10 19:41:31 660

原创 gcm command

gcm

2025-06-10 11:31:47 111

原创 LLMs 系列实操科普(2)

LLMs 系列实操科普(2)

2025-06-09 20:10:07 817

原创 LLMs 系列实操科普(1)

LLMs 系列实操科普(1)

2025-06-09 09:16:22 413

原创 LLMs 系列科普文(15)

LLMs 系列科普文(15)

2025-06-08 22:31:34 738

原创 LLMs 系列科普文(14)

LLMs 系列科普文(14)

2025-06-08 22:27:13 792

原创 LLMs 系列科普文(13)

LLMs 系列科普文(13)

2025-06-08 22:23:01 789

原创 LLMs 系列科普文(12)

LLMs 系列科普文(12)

2025-06-08 22:16:34 1064

原创 LLMs 系列科普文(11)

LLMs 系列科普文(11)

2025-06-08 22:10:04 651

原创 LLMs 系列科普文(10)

LLMs 系列科普文(10)

2025-06-08 22:06:59 735

原创 LLMs 系列科普文(9)

LLMs 系列科普文(9)

2025-06-08 21:02:00 982

原创 LLMs 系列科普文(8)

LLMs 系列科普文(8)

2025-06-08 20:48:47 954

原创 LLMs 系列科普文(7)

LLMs 系列科普文(7)

2025-06-08 20:45:10 694

原创 LLMs 系列科普文(6)

LLMs 系列科普文(6)

2025-06-08 20:35:54 562

原创 LLMs 系列科普文(5)

LLMs 系列科普文(5)

2025-06-08 20:27:13 667

原创 LLMs 系列科普文(4)

LLMs 系列科普文(4)

2025-06-08 16:51:18 949

原创 LLMs 系列科普文(3)

LLMs 系列科普文(3)

2025-06-08 16:22:58 806

原创 LLMs 系列科普文(2)

LLMs 系列科普文(2)

2025-06-08 16:10:49 701

原创 LLMs 系列科普文(1)

LLMs 系列科普文(1)

2025-06-08 15:32:03 932

原创 SD系列——图像高清化算法方法

图片放大高清化方法总结

2023-09-15 18:46:40 5849

原创 MIT 6.S965 韩松课程 05

回顾计算机系统中的数据类型,介绍神经网络中的量化,以及介绍三种常见的量化方法。

2023-04-11 14:25:30 1141 2

原创 MIT 6.S965 韩松课程 04

Have you found it difficult to deploy neural networks on mobile devices and IoT devices? Have you ever found it too slow to train neural networks?

2023-02-16 10:07:26 1407 5

原创 MIT 6.S965 韩松课程 03

Have you found it difficult to deploy neural networks on mobile devices and IoT devices? Have you ever found it too slow to train neural networks?

2023-02-10 18:05:31 1466

原创 MIT 6.S965 韩松课程 02

Review the basics of deep learning and introduce efficiency metrics for neural networks.

2023-02-09 09:59:58 1066

原创 PyTorch grad 与 Optimizer(params) 区别

目录PyTorch grad 与 Optimizer(params) 区别PyTorch grad 与 Optimizer(params) 区别Tensor 可以设置属性 requires_grad=True/False 说明其是否进行梯度更新,而 Optimizer(params) 可以用来指定要进行优化的参数有哪些。那么二者究竟有啥区别,但需要冻结某些参数时,正确的做法又应该是什么,二选一还是都应该设置?我们通过下面的一系列实验进行说明:(除实验一外,其他所有实验中的省略部分参考实验一部分).

2021-10-22 17:16:09 1000 2

原创 XGBoost 知识点总结

目录一、提升树介绍1.1 监督学习元素1.1.1 模型和参数1.1.2 目标函数:训练损失+正则化1.1.3 为什么需要一般性原则1.2 决策树集成1.3 树提升1.3.1 Additive Training1.3.2 模型复杂度1.3.3 结构分1.3.4 学习树结构1.4 小结二、公式推导解释2.1 XGBoost 的目标函数2.2 学习第 ttt 棵树2.3 泰勒展开2.4 定义一棵树2.5 定义树的复杂度2.6 叶子结点归组2.7 树结构打分2.8 树的生长细节2.8.1 分裂一个结点2.8.2 .

2021-07-27 16:23:30 872

原创 李宏毅 机器学习 2016 秋:7、Brief Introduction of Deep Learning

文章目录7、Brief Introduction of Deep Learning7、Brief Introduction of Deep LearningDeep learning 现在非常的热门,所以,它可以用在什么地方,我觉得真的还不需要多讲,我觉得大家搞不好都知道得比我更多,我相信如果你随便用 deep learning 当作关键字,胡乱 google 一下,你就可以找到一大堆的、exciting 的 result,所以,我们就直接用这个图呢,来简单地 summarize 一下这个趋势,这个.

2021-06-21 20:32:47 302

原创 李宏毅 机器学习 2016 秋:6、Classification: Logistic Regression

文章目录六、Classification: Logistic Regression六、Classification: Logistic Regression我们来讲 Logistic Regression,我们在上一份投影片里面,我们都已经知道说,我们要找的东西呢,是一个机率,是一个 Posterior probability,如果这个 Posterior probability > 0.5 的话,就 output C1C_1C1​,否则呢,就 output C2C_2C2​,我们知道这个 p.

2021-06-20 11:36:37 250

原创 李宏毅 机器学习 2016 秋:5、Classification:Probabilistic Generative Model

文章目录五、Classification:Probabilistic Generative Model五、Classification:Probabilistic Generative Model接下来我们要来进入新的主题,我们要来讲分类这件事情,在分类这件事情呢,我们要找的是一个 function,它的 input 是一个 object xxx,它的 output 是这个 object 属于哪一个 class,属于 nnn 个 class 的哪一个,那这样的 task 有很多的 applicati.

2021-06-09 21:51:06 377

原创 李宏毅 机器学习 2016 秋:4、bias vs variance

文章目录四、Where does the error come from四、Where does the error come from我们上一次有看到说,如果你选择不同的 function set,你就是选择不同的 model,你在 testing data 上也会得到不同的 error,而且越复杂的 model 不见得会给你越低的 error,你会发现说,做 linear regression 的时候,我们考虑的 input 是 1 次、1 次 2 次、 1 次 2 次 3 次一直到 1 次到 5.

2021-06-07 21:44:49 535

原创 李宏毅 机器学习 2016 秋:3、Gradient Descent

文章目录三、Gradient Descent3.1 Tuning your learning rates3.2 Stochastic Gradient Descent3.3 Feature Scaling3.4 理论支持三、Gradient Descent今天我们要讲的是 Gradient Descent,Gradient Descent 我们上次已经大概讲过怎么做了,但是有一些小技巧呢,你可能是不知道的,所以我们要再详细说明一下,Gradient Descent 你要怎么把它做得更好,那我们上次是这.

2021-06-05 15:07:31 232 2

原创 李宏毅 机器学习 2016 秋:2、Regression

二、Regression: Case Study我们今天要讲的是 Regression,等一下我会举一个例子,来讲 Regression 是怎么做的,顺便引出一些 machine learning 里面,常见的重要观念。那 regression 可以做什么?除了预测 PM2.5 这个任务以外,还有很多其他非常有用的 task。举例来说,,如果你可以做一个股票预测的系统,如果你可以做一个股票预测的系统,你要做的事情就是找一个function,这个 function 的 input 可能是过去十年各种.

2021-06-03 23:58:21 236 2

原创 李宏毅 机器学习 2016 秋:1、Learning Map

从本篇开始,记录李宏毅 机器学习 2016 秋 相关课程内容,图片内容均来自课程 PPT,文字内容全部来自于课程视频字幕文字,之所以这样整理的目的是同样的内容看视频需要一个小时,看文章远小于 1 个小时,且视频存储起来,看起来也比较麻烦。至于为什么从 16 年这么古老的年代开始,首先这些课程内容都是一些基础知识,没有过时一说,且最新课程很多内容也都是引用以往课程中相关内容,因此我们从头开始。一、Learning Map这是这学期要学习的地图,我们接下来一块一块的看一下这学期都学些什么。接下来..

2021-06-03 23:31:09 308 2

翻译 geeksforgeeks —— 算法 1

目录算法一、查找和排序1.1 线性查找1.2 二分查找1.3 跳跃搜索1.4 插值搜索1.5 指数搜索1.6 为什么二元搜索优于三元搜索?1.7 选择排序1.8 冒泡排序1.9 插入排序1.10 归并排序1.11 堆排序1.12 快速排序geeksforgeeks 上有很多不错的基础性计算机学科知识,其风格不过多注重理论,也不是一味的像 leetcode 那种刷题,每一篇内容篇幅安排的都较短,也有一定的知识组织架构,非常适合初学者或作为工具字典书定向查阅相关内容。该合集内容主要针对的是算法与数据结构.

2021-05-29 17:04:06 1258

翻译 Simhash 与汉明距离问题求解

目录Simhash 与汉明距离问题求解simhash 的生成图像的处理求解汉明距离问题表的存储其他配置Simhash 与汉明距离问题求解Simhash 是一种聪明的方法,可以在一个大语料库中快速找到几乎相同的文档(或其他项目),而不必单独将每个文档和其他文档进行比较。对任何规模的语料库使用 simhash 包含两个部分:生成 simhash本身和解决汉明距离问题。二者缺一不可。与 minhash 不同,simhash 方法实际上不允许完全相似性检测,因为它敏感的相似性范围非常小。最好用近似重复检测来描.

2021-05-12 15:54:52 962

原创 基数统计—— HyperLogLog 算法

目录基数计数基本概念基数计数方法B树bitmap概率算法HLL直观演示HLL 的实际步骤算法来源(N次伯努利过程)解释LogLogCounting均匀随机化分桶平均偏差修正误差分析算法应用误差控制内存使用分析合并HyperLogLog Counting基本算法偏差分析分段偏差修正结论并行化应用场景参考阅读文章主体内容来自于 神奇的 HyperLogLog 算法,原创链接貌似已失效,可参照大概是其转载内容 HyperLogLog ,本文在此基础上略有删改。基数计数基本概念**基数计数(cardin.

2021-04-24 14:59:53 899

原创 4、Reading Rasa Source Code —— Domain 解析

目录四、Train —— 准备工作五、Train —— domain 解析缓存数据的加载初始化四、Train —— 准备工作当我们执行 rasa train 命令后,实际会进入到函数 rasa.cli.train.train() 中,这相当于模型训练的主函数,接下来,我们将对该过程进行拆解,看看 rasa train 背后,都发生了什么。# rasa.cli.train.train()def train(): domain = rasa.cli.utils.get_validated_pa.

2021-03-14 14:12:44 946

原创 3、Reading Rasa Source Code —— entry

目录3、Reeading Rasa Source Code —— entry3、Reeading Rasa Source Code —— entry在创建各命令的参数设置后,rasa 又对 log 设置、第三方包的 log 设置以及 TensorFlow 的 cpu/gpu 运行环境等做了一些准备工作,这部分的内容比较简单,就不做介绍。# rasa.__main__.main()if hasattr(cmdline_arguments, "func"): # 如果具有.

2021-03-02 09:56:49 353 1

原创 2、Reading Rasa Source Code —— CLI

目录2、Reading Rasa Source Code —— CLI2、Reading Rasa Source Code —— CLI在进入主函数后,前三行的内容主要与 rasa 命令行内容相关,parse_last_positional_argument_as_model_path() arg_parser = create_argument_parser(.

2021-03-01 16:00:22 370

原创 1、Reading Rasa Source Code —— main

目录mainmain从 pypi 官方网站上下载 rasa 的最后一个释放版本(截止目前,最新版本为 2.2.1)的源码,解压后,在根目录下,找到 setup.py 文件,这是安装引导程序,我们主要关注的是 entry_points ,Entry points 是可以用来支持自动生成脚本的,即通过 pip 安装 rasa 后,在 Python 解释器所在的 bin 文件夹下,会生成一个 rasa 脚本,这就是为什么安装 rasa 后,我们就可以直接通过 shell 执行一些 rasa 命令,如 ras.

2020-12-22 15:15:28 617

stopwords.txt

该资源是本人博客《文本聚类(一)—— LDA 主题模型》中所使用的停用词表,是在百度停用词表的基础上加入了一些分词后产生的单个字以及数字信息等内容,不建议作为通用性质的停用词表使用

2021-07-08

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除