基本算法
     
      1.数论算法
      求两数的最大公约数
      function gcd(a,b:integer):integer;
      begin
      if b=0 then gcd:=a
      else gcd:=gcd (b,a mod b);
      end ;
     
      求两数的最小公倍数
      function lcm(a,b:integer):integer;
      begin
      if a< b then swap(a,b);
      lcm:=a;
      while lcm mod b >0 do inc(lcm,a);
      end;
     
      素数的求法
      A.小范围内判断一个数是否为质数:
      function prime (n: integer): Boolean;
      var I: integer;
      begin
      for I:=2 to trunc(sqrt(n)) do
      if n mod I=0 then begin
      prime:=false; exit;
      end;
      prime:=true;
      end;
     
      B.判断longint范围内的数是否为素数(包含求50000以内的素数表):
      procedure getprime;
      var
      i,j:longint;
      p:array[1..50000] of boolean;
      begin
      fillchar(p,sizeof(p),true);
      p[1]:=false;
      i:=2;
      while i< 50000 do begin
      if p[i] then begin
      j:=i*2;
      while j< 50000 do begin
      p[j]:=false;
      inc(j,i);
      end;
      end;
      inc(i);
      end;
      l:=0;
      for i:=1 to 50000 do
      if p[i] then begin
      inc(l);pr[l]:=i;
      end;
      end;{getprime}
     
      function prime(x:longint):integer;
      var i:integer;
      begin
      prime:=false;
      for i:=1 to l do
      if pr[i] >=x then break
      else if x mod pr[i]=0 then exit;
      prime:=true;
      end;{prime}
     
      2.
     
      3.
     
     
      4.求最小生成树
      A.Prim算法:
      procedure prim(v0:integer);
      var
      lowcost,closest:array[1..maxn] of integer;
      i,j,k,min:integer;
      begin
      for i:=1 to n do begin
      lowcost[i]:=cost[v0,i];
      closest[i]:=v0;
      end;
      for i:=1 to n-1 do begin
      {寻找离生成树最近的未加入顶点k}
      min:=maxlongint;
      for j:=1 to n do
      if (lowcost[j]< min) and (lowcost[j]< >0) then begin
      min:=lowcost[j];
      k:=j;
      end;
      lowcost[k]:=0; {将顶点k加入生成树}
      {生成树中增加一条新的边k到closest[k]}
      {修正各点的lowcost和closest值}
      for j:=1 to n do
      if cost[k,j]< lwocost[j] then begin
      lowcost[j]:=cost[k,j];
      closest[j]:=k;
      end;
      end;
      end;{prim}
     
      B.Kruskal算法:(贪心)
      按权值递增顺序删去图中的边,若不形成回路则将此边加入最小生成树。
      function find(v:integer):integer; {返回顶点v所在的集合}
      var i:integer;
      begin
      i:=1;
      while (i< =n) and (not v in vset[i]) do inc(i);
      if i< =n then find:=i else find:=0;
      end;
     
      procedure kruskal;
      var
      tot,i,j:integer;
      begin
      for i:=1 to n do vset[i]:=[i];{初始化定义n个集合,第I个集合包含一个元素I}
      p:=n-1; q:=1; tot:=0; {p为尚待加入的边数,q为边集指针}
      sort;
      {对所有边按权值递增排序,存于e[I]中,e[I].v1与e[I].v2为边I所连接的两个顶点的序号,e[I].len为第I条边的长度}
      while p >0 do begin
      i:=find(e[q].v1);j:=find(e[q].v2);
      if i< >j then begin
      inc(tot,e[q].len);
      vset[i]:=vset[i]+vset[j];vset[j]:=[];
      dec(p);
      end;
      inc(q);
      end;
      writeln(tot);
      end;
     
     
      5.最短路径
      A.标号法求解单源点最短路径:
      var
      a:array[1..maxn,1..maxn] of integer;
      b:array[1..maxn] of integer; {b[i]指顶点i到源点的最短路径}
      mark:array[1..maxn] of boolean;
     
      procedure bhf;
      var
      best,best_j:integer;
      begin
      fillchar(mark,sizeof(mark),false);
      mark[1]:=true; b[1]:=0;{1为源点}
      repeat
      best:=0;
      for i:=1 to n do
      If mark[i] then {对每一个已计算出最短路径的点}
      for j:=1 to n do
      if (not mark[j]) and (a[i,j] >0) then
      if (best=0) or (b[i]+a[i,j]< best) then begin
      best:=b[i]+a[i,j]; best_j:=j;
      end;
      if best >0 then begin
      b[best_j]:=best;mark[best_j]:=true;
      end;
      until best=0;
      end;{bhf}
     
      B.Floyed算法求解所有顶点对之间的最短路径:
      procedure floyed;
      begin
      for I:=1 to n do
      for j:=1 to n do
      if a[I,j] >0 then p[I,j]:=I else p[I,j]:=0; {p[I,j]表示I到j的最短路径上j的前驱结点}
      for k:=1 to n do {枚举中间结点}
      for i:=1 to n do
      for j:=1 to n do
      if a[i,k]+a[j,k]< a[i,j] then begin
      a[i,j]:=a[i,k]+a[k,j];
      p[I,j]:=p[k,j];
      end;
      end;
     
      C. Dijkstra 算法:
      类似标号法,本质为贪心算法。
      var
      a:array[1..maxn,1..maxn] of integer;
      b,pre:array[1..maxn] of integer; {pre[i]指最短路径上I的前驱结点}
      mark:array[1..maxn] of boolean;
      procedure dijkstra(v0:integer);
      begin
      fillchar(mark,sizeof(mark),false);
      for i:=1 to n do begin
      d[i]:=a[v0,i];
      if d[i]< >0 then pre[i]:=v0 else pre[i]:=0;
      end;
      mark[v0]:=true;
      repeat {每循环一次加入一个离1集合最近的结点并调整其他结点的参数}
      min:=maxint; u:=0; {u记录离1集合最近的结点}
      for i:=1 to n do
      if (not mark[i]) and (d[i]< min) then begin
      u:=i; min:=d[i];
      end;
      if u< >0 then begin
      mark[u]:=true;
      for i:=1 to n do
      if (not mark[i]) and (a[u,i]+d[u]< d[i]) then begin
      d[i]:=a[u,i]+d[u];
      pre[i]:=u;
      end;
      end;
      until u=0;
      end;
     
      D.计算图的传递闭包
      Procedure Longlink;
      Var
      T:array[1..maxn,1..maxn] of boolean;
      Begin
      Fillchar(t,sizeof(t),false);
      For k:=1 to n do
      For I:=1 to n do
      For j:=1 to n do T[I,j]:=t[I,j] or (t[I,k] and t[k,j]);
      End;
     
     
      6.0-1背包问题(部分背包问题可有贪心法求解:计算Pi/Wi)
      数据结构:
      w[i]:第i个背包的重量;
      p[i]:第i个背包的价值;
      (1)0-1背包: 每个背包只能使用一次或有限次(可转化为一次):
      A.求最多可放入的重量。
      NOIP2001 装箱问题
      有一个箱子容量为v(正整数,o≤v≤20000),同时有n个物品(o≤n≤30),每个物品有一个体积 (正整数)。要求从 n 个物品中,任取若千个装入箱内,使箱子的剩余空间为最小。
      l 搜索方法
      procedure search(k,v:integer); {搜索第k个物品,剩余空间为v}
      var i,j:integer;
      begin
      if v< best then best:=v;
      if v-(s[n]-s[k-1]) >=best then exit; {s[n]为前n个物品的重量和}
      if k< =n then begin
      if v >w[k] then search(k+1,v-w[k]);
      search(k+1,v);
      end;
      end;
     
      l DP
      F[I,j]为前i个物品中选择若干个放入使其体积正好为j的标志,为布尔型。
      实现:将最优化问题转化为判定性问题
      F[I,j]=f[i-1,j-w[i]] (w[I]< =j< =v) 边界:f[0,0]:=true.
      For I:=1 to n do
      For j:=w[I] to v do F[I,j]:=f[I-1,j-w[I]];
      优化:当前状态只与前一阶段状态有关,可降至一维。
      F[0]:=true;
      For I:=1 to n do begin
      F1:=f;
      For j:=w[I] to v do
      If f[j-w[I]] then f1[j]:=true;
      F:=f1;
      End;
     
      B.求可以放入的最大价值。
      F[I,j]=
     
     
      C.求恰好装满的情况数。
     
     
     
      (2)每个背包可使用任意次:
      A.求最多可放入的重量。
      状态转移方程为
      f[I,j]=max{f[i-w[j]
     
     
     
     
      B.求可以放入的最大价值。
      USACO 1.2 Score Inflation
      进行一次竞赛,总时间T固定,有若干种可选择的题目,每种题目可选入的数量不限,每种题目有一个ti(解答此题所需的时间)和一个si(解答此题所得的分数),现要选择若干题目,使解这些题的总时间在T以内的前提下,所得的总分最大,求最大的得分。
      *易想到:
      f[i,j] = max { f [i- k*w[j], j-1] + k*v[j] } (0< =k< = i div w[j])
      其中f[i,j]表示容量为i时取前j种背包所能达到的最大值。
      *优化:
      Begin
      FillChar(problem,SizeOf(problem),0);
      Assign(Input,'inflate.in');
      Reset(Input);
      Readln(M,N);
      For i:=1 To N Do
      With problem[i] Do
      Readln(point,time);
      Close(Input);
     
      FillChar(f,SizeOf(f),0);
      For i:=1 To M Do
      For j:=1 To N Do
      If i-problem[j].time >=0 Then
      Begin
      t:=problem[j].point+f[i-problem[j].time];
      If t >f[i] Then f[i]:=t;
      End;
     
      Assign(Output,'inflate.out');
      Rewrite(Output);
      Writeln(f[M]);
      Close(Output);
      End.
      C.求恰好装满的情况数。
      Ahoi2001 Problem2
      求自然数n本质不同的质数和的表达式的数目。
      思路一,生成每个质数的系数的排列,在一一测试,这是通法。
      procedure try(dep:integer);
      var i,j:integer;
      begin
      cal; {此过程计算当前系数的计算结果,now为结果}
      if now >n then exit; {剪枝}
      if dep=l+1 then begin {生成所有系数}
      cal;
      if now=n then inc(tot);
      exit;
      end;
      for i:=0 to n div pr[dep] do begin
      xs[dep]:=i;
      try(dep+1);
      xs[dep]:=0;
      end;
      end;
     
      思路二,递归搜索效率较高
      procedure try(dep,rest:integer);
      var i,j,x:integer;
      begin
      if (rest< =0) or (dep=l+1) then begin
      if rest=0 then inc(tot);
      exit;
      end;
      for i:=0 to rest div pr[dep] do
      try(dep+1,rest-pr[dep]*i);
      end;
     
      思路三:可使用动态规划求解
      USACO1.2 money system
      V个物品,背包容量为n,求放法总数。
      转移方程:
     
      Procedure update;
      var j,k:integer;
      begin
      c:=a;
      for j:=0 to n do
      if a[j] >0 then
      for k:=1 to n div now do
      if j+now*k< =n then inc(c[j+now*k],a[j]);
      a:=c;
      end;
      {main}
      begin
      read(now); {读入第一个物品的重量}
      i:=0; {a[i]为背包容量为i时的放法总数}
      while i< =n do begin
      a[i]:=1; inc(i,now); end; {定义第一个物品重的整数倍的重量a值为1,作为初值}
      for i:=2 to v do
      begin
      read(now);
      update; {动态更新}
      end;
      writeln(a[n]);
     
      7.排序算法
      A.快速排序:
      procedure sort(l,r:integer);
      var i,j,mid:integer;
      begin
      i:=l;j:=r; mid:=a[(l+r) div 2]; {将当前序列在中间位置的数定义为中间数}
      repeat
      while a[i]< mid do inc(i); {在左半部分寻找比中间数大的数}
      while mid< a[j] do dec(j);{在右半部分寻找比中间数小的数}
      if i< =j then begin {若找到一组与排序目标不一致的数对则交换它们}
      swap(a[i],a[j]);
      inc(i);dec(j); {继续找}
      end;
      until i >j;
      if l< j then sort(l,j); {若未到两个数的边界,则递归搜索左右区间}
      if i< r then sort(i,r);
      end;{sort}
     
      B.插入排序:
      procedure insert_sort(k,m:word); {k为当前要插入的数,m为插入位置的指针}
      var i:word; p:0..1;
      begin
      p:=0;
      for i:=m downto 1 do
      if k=a[i] then exit;
      repeat
      If k >a[m] then begin
      a[m+1]:=k; p:=1;
      end
      else begin
      a[m+1]:=a[m]; dec(m);
      end;
      until p=1;
      end;{insert_sort}
      l 主程序中为:
      a[0]:=0;
      for I:=1 to n do insert_sort(b[I],I-1);
     
      C.选择排序:
      procedure sort;
      var i,j,k:integer;
      begin
      for i:=1 to n-1 do begin
      k:=i;
      for j:=i+1 to n do
      if a[j]< a[k] then k:=j; {找出a[I]..a[n]中最小的数与a[I]作交换}
      if k< >i then begin
      a[0]:=a[k];a[k]:=a[i];a[i]:=a[0];
      end;
      end;
      end;
     
      D. 冒泡排序
      procedure sort;
      var i,j,k:integer;
      begin
      for i:=n downto 1 do
      for j:=1 to i-1 do
      if a[j] >a[i] then begin
      a[0]:=a[i];a[i]:=a[j];a[j]:=a[0];
      end;
      end;
     
      E.堆排序:
      procedure sift(i,m:integer);{调整以i为根的子树成为堆,m为结点总数}
      var k:integer;
      begin
      a[0]:=a[i]; k:=2*i;{在完全二叉树中结点i的左孩子为2*i,右孩子为2*i+1}
      while k< =m do begin
      if (k< m) and (a[k]< a[k+1]) then inc(k);{找出a[k]与a[k+1]中较大值}
      if a[0]< a[k] then begin a[i]:=a[k];i:=k;k:=2*i; end
      else k:=m+1;
      end;
      a[i]:=a[0]; {将根放在合适的位置}
      end;
     
      procedure heapsort;
      var
      j:integer;
      begin
      for j:=n div 2 downto 1 do sift(j,n);
      for j:=n downto 2 do begin
      swap(a[1],a[j]);
      sift(1,j-1);
      end;
      end;
     
      F. 归并排序
      {a为序列表,tmp为辅助数组}
      procedure merge(var a:listtype; p,q,r:integer);
      {将已排序好的子序列a[p..q]与a[q+1..r]合并为有序的tmp[p..r]}
      var I,j,t:integer;
      tmp:listtype;
      begin
      t:=p;i:=p;j:=q+1;{t为tmp指针,I,j分别为左右子序列的指针}
      while (t< =r) do begin
      if (i< =q){左序列有剩余} and ((j >r) or (a[i]< =a[j])) {满足取左边序列当前元素的要求}
      then begin
      tmp[t]:=a[i]; inc(i);
      end
      else begin
      tmp[t]:=a[j];inc(j);
      end;
      inc(t);
      end;
      for i:=p to r do a[i]:=tmp[i];
      end;{merge}
     
      procedure merge_sort(var a:listtype; p,r: integer); {合并排序a[p..r]}
      var q:integer;
      begin
      if p< >r then begin
      q:=(p+r-1) div 2;
      merge_sort (a,p,q);
      merge_sort (a,q+1,r);
      merge (a,p,q,r);
      end;
      end;
      {main}
      begin
      merge_sort(a,1,n);
      end.
     
     
      G.基数排序
      思想:对每个元素按从低位到高位对每一位进行一次排序
     
     
      8.高精度计算
      A.
      B.
      C.
      D.
     
      9.树的遍历顺序转换
      A. 已知前序中序求后序
      procedure Solve(pre,mid:string);
      var i:integer;
      begin
      if (pre='') or (mid='') then exit;
      i:=pos(pre[1],mid);
      solve(copy(pre,2,i),copy(mid,1,i-1));
      solve(copy(pre,i+1,length(pre)-i),copy(mid,i+1,length(mid)-i));
      post:=post+pre[1]; {加上根,递归结束后post即为后序遍历}
      end;