用Python实现时间序列模型实战——Day 8: 季节性ARIMA模型 (SARIMA)

一、学习内容
1. SARIMA 模型的定义与公式推导

SARIMA 模型

  • SARIMA 模型是扩展了 ARIMA 模型的一种方法,全称为季节性自回归积分滑动平均模型(Seasonal AutoRegressive Integrated Moving Average)。它结合了 ARIMA 模型的非季节性部分和季节性成分,用于处理具有季节性模式的时间序列数据。
  • SARIMA 模型可以表示为

\Phi_P(B^m) \phi_p(B) \nabla^d \nabla_m^D y_t = \mu + \Theta_Q(B^m) \theta_q(B) \epsilon_t

其中:

  • y_t 是时间 t 的观察值。
  • \phi_p(B)  是非季节性自回归多项式,阶数为 p
  • \Phi_P(B^m) 是季节性自回归多项式,阶数为 P
  • \theta_q(B) 是非季节性移动平均多项式,阶数为 q
  • \Theta_Q(B^m) 是季节性移动平均多项式,阶数为 Q
  • \nabla^d 表示非季节性差分操作,次数为 d
  • \nabla_m^D​ 表示季节性差分操作,次数为 D
  • \epsilon_t 是白噪声项。
  • m 是季节性周期。

SARIMA 模型的公式

  • SARIMA 模型的数学表达式为:

(1 - \Phi_1 B^{12})(1 - \phi_1 B)(1 - B)(1 - B^{12})y_t = \mu + (1 + \Theta_1 B^{12})(1 + \theta_1 B) \epsilon_t

其中:

  • \phi_1 是非季节性自回归项的系数。
  • \Phi_1是季节性自回归项的系数。
  • \theta_1​ 是非季节性移动平均项的系数。
  • \Theta_1是季节性移动平均项的系数。
  • B 是滞后算子,表示滞后 1 期。
  • \epsilon_t 是白噪声项。
2. SARIMA 模型的参数识别与选择 (P, D, Q)

非季节性参数识别

  • p(非季节性自回归项):通过偏自相关函数(PACF)图确定,如果 PACF 在某个滞后期后截尾,截尾点即为 p 的值。
  • d(非季节性差分次数):通过差分使序列平稳,差分次数 d 通常根据时间序列的平稳性检验或观察差分后的序列图来选择。
  • q(非季节性移动平均项):通过自相关函数(ACF)图确定,如果 ACF 在某个滞后期后截尾,截尾点即为 q 的值。

季节性参数识别

  • P(季节性自回归项):通过季节性 PACF 图确定。
  • D(季节性差分次数):通过季节性差分使序列平稳,季节性差分次数 D 根据季节性周期和数据的季节性特征确定。
  • Q(季节性移动平均项):通过季节性 ACF 图确定。
  • m(季节性周期):季节性周期 m 通常是已知的,如每年或每季度。
3. SARIMA 模型的季节性成分处理

季节性成分处理

  • 在 SARIMA 模型中,季节性成分通过季节性自回归(SAR)、季节性差分(SD)、季节性移动平均(SMA)项进行处理。这些季节性成分使模型能够捕捉周期性模式,并提升对季节性数据的预测能力。
二、实战案例

下面我们将使用 statsmodels 库对航空乘客数据进行 SARIMA 模型的拟合与预测。

1. 数据加载与原始数据可视化
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.tsa.statespace.sarimax import SARIMAX
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf

# 加载时间序列数据集
url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/airline-passengers.csv"
data = pd.read_csv(url, parse_dates=['Month'], index_col='Month')

# 绘制原始数据的时间序列图
plt.figure(figsize=(12, 6))
plt.plot(data['Passengers'], label='Original')
plt.title('Original Time Series')
plt.xlabel('Date')
plt.ylabel('Number of Passengers')
plt.legend()
plt.grid(True)
plt.show()

程序解释:

  • 载入航空乘客数据集,并绘制原始时间序列图,观察数据的趋势和季节性波动。

结果输出:

原始数据的时间序列图:图表显示了航空乘客数量随时间的变化,表现出明显的上升趋势和季节性波动。 

2. 一阶差分与季节性差分
# 进行一阶差分以去除趋势
data_diff = data.diff().dropna()

# 进行季节性差分以去除季节性成分
data_seasonal_diff = data_diff.diff(12).dropna()

# 绘制差分后的时间序列图
plt.figure(figsize=(12, 6))
plt.plot(data_seasonal_diff['Passengers'], label='Seasonally Differenced')
plt.title('Seasonally Differenced Time Series')
plt.xlabel('Date')
plt.ylabel('Differenced Passengers')
plt.legend()
plt.grid(True)
plt.show()

程序解释: 

  • 对时间序列进行一阶差分,以去除趋势。
  • 对差分后的数据进行季节性差分,以去除季节性成分。季节性差分是针对周期为 12 的数据进行差分(即 diff(12)),消除一年中的季节性波动。

结果输出:

差分后的时间序列图:一阶差分后的数据消除了趋势,而季节性差分进一步消除了季节性成分,表现为更加平稳的时间序列。 

3. ACF 和 PACF 图的绘制
# 绘制 ACF 和 PACF 图
plt.figure(figsize=(12, 6))
plt.subplot(121)
plot_acf(data_seasonal_diff, lags=40, ax=plt.gca())
plt.title('ACF of Seasonally Differenced Data')

plt.subplot(122)
plot_pacf(data_seasonal_diff, lags=40, ax=plt.gca())
plt.title('PACF of Seasonally Differenced Data')

plt.tight_layout()
plt.show()

程序解释: 

  • 绘制季节性差分后的 ACF 和 PACF 图,帮助确定 SARIMA 模型的参数。

结果输出:

ACF 和 PACF 图:ACF 和 PACF 图展示了季节性差分后的数据自相关结构,通过这些图可以确定 SARIMA 模型的参数。 

4. SARIMA 模型拟合
# SARIMA 模型拟合 (p, d, q) x (P, D, Q, m) = (1, 1, 1) x (1, 1, 1, 12)
model = SARIMAX(data['Passengers'], order=(1, 1, 1), seasonal_order=(1, 1, 1, 12))
results = model.fit()

# 输出模型摘要
print(results.summary())

程序解释: 

  • 使用 SARIMAX 函数拟合 SARIMA 模型。本例中选择 (p, d, q) = (1, 1, 1)(P, D, Q, m) = (1, 1, 1, 12) 来拟合模型。
  • 输出模型的摘要信息,包括 AIC、BIC 等指标。

结果输出:

SARIMAX Results                                      
==========================================================================================
Dep. Variable:                         Passengers   No. Observations:                  144
Model:             SARIMAX(1, 1, 1)x(1, 1, 1, 12)   Log Likelihood                -506.149
Date:                            Mon, 02 Sep 2024   AIC                           1022.299
Time:                                    12:59:16   BIC                           1036.675
Sample:                                01-01-1949   HQIC                          1028.140
                                     - 12-01-1960                                         
Covariance Type:                              opg                                         
==============================================================================
                 coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
ar.L1         -0.1272      0.356     -0.357      0.721      -0.825       0.570
ma.L1         -0.2149      0.325     -0.660      0.509      -0.853       0.423
ar.S.L12      -0.9272      0.214     -4.341      0.000      -1.346      -0.509
ma.S.L12       0.8395      0.309      2.717      0.007       0.234       1.445
sigma2       130.7819     15.420      8.481      0.000     100.559     161.005
===================================================================================
Ljung-Box (L1) (Q):                   0.00   Jarque-Bera (JB):                 7.05
Prob(Q):                              0.99   Prob(JB):                         0.03
Heteroskedasticity (H):               2.65   Skew:                             0.13
Prob(H) (two-sided):                  0.00   Kurtosis:                         4.11
===================================================================================

SARIMA 模型的摘要:模型摘要中包含了各参数的估计值、标准误差、t 统计量,以及 AIC/BIC 等信息准则,用于评估模型的拟合效果。 

5. 模型预测
# 进行预测
pred = results.get_forecast(steps=24)
pred_ci = pred.conf_int()

# 绘制预测结果
plt.figure(figsize=(12, 6))
plt.plot(data.index, data['Passengers'], label='Observed')
plt.plot(pred.predicted_mean.index, pred.predicted_mean, color='red', label='Forecast')
plt.fill_between(pred_ci.index, pred_ci.iloc[:, 0], pred_ci.iloc[:, 1], color='pink', alpha=0.3)
plt.title('SARIMA Model Forecast')
plt.xlabel('Date')
plt.ylabel('Number of Passengers')
plt.legend()
plt.grid(True)
plt.show()

程序解释: 

  • 使用拟合的 SARIMA 模型进行未来 24 个月的乘客数量预测。
  • 绘制预测结果图,并包含置信区间(confidence interval),展示模型预测的范围。

结果输出:

模型预测结果:预测结果图展示了未来 24 个月的航空乘客数量预测值,并在图中包含了置信区间,表示预测的不确定性范围。预测结果与观测数据的趋势和季节性波动相一致,表明 SARIMA 模型能够有效捕捉季节性时间序列的数据结构。 

三、运行结果分析
1. 季节性处理
  • SARIMA 模型通过季节性自回归、季节性差分和季节性移动平均的组合,成功捕捉了时间序列中的季节性成分。这种处理方式特别适用于具有周期性模式的时间序列。
2. ACF 和 PACF 图分析
  • 通过季节性差分后的 ACF 和 PACF 图,确定了 SARIMA 模型的参数。这些图表帮助识别了数据中的自相关性和季节性成分,为模型参数的选择提供了依据。
3. SARIMA 模型的拟合与预测
  • SARIMA 模型拟合后的结果表明,模型能够有效地解释和预测时间序列数据。AIC/BIC 指标可以用来评估模型的优劣。
  • 预测结果显示了未来的乘客数量,并且预测结果与观测数据的季节性波动相一致,表明模型的预测效果良好。

通过这次学习,您掌握了如何构建和应用 SARIMA 模型来处理具有季节性模式的时间序列数据。SARIMA 模型在实际应用中非常有用,特别是在预测那些具有周期性模式的数据时,如销售数据、气象数据等。

四、补充更新——非季节性时间序列的案例分析

以下是一个非季节性时间序列的案例分析,它展示了如何使用 ARIMA 模型来分析和预测数据。这个案例使用的时间序列数据没有明显的季节性成分,主要体现趋势和随机性。

1. 案例:某公司月度销售额预测

假设我们有一家公司的月度销售额数据,该数据呈现出一定的趋势性,但没有显著的季节性波动。我们将使用 ARIMA 模型来分析和预测未来的销售额。

2. 数据生成与可视化

首先,我们生成一个模拟的非季节性时间序列数据,并进行可视化:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.tsa.arima.model import ARIMA

# 生成非季节性时间序列数据
np.random.seed(42)
time = np.arange(1, 101)
sales = 50 + 2 * time + np.random.normal(loc=0.0, scale=10, size=len(time))  # 线性趋势 + 随机噪声

# 创建数据框
data = pd.DataFrame({'Month': pd.date_range(start='2020-01', periods=len(time), freq='M'), 'Sales': sales})
data.set_index('Month', inplace=True)

# 绘制原始数据的时间序列图
plt.figure(figsize=(10, 6))
plt.plot(data, label='Monthly Sales')
plt.title('Company Monthly Sales Time Series')
plt.xlabel('Date')
plt.ylabel('Sales')
plt.legend()
plt.grid(True)
plt.show()

数据说明:

在这个示例中,数据展示了一个月度销售额的时间序列。我们假设这个数据没有明显的季节性变化,但呈现出一定的上升趋势和随机波动。

 结果输出:

3. ARIMA 模型的拟合

接下来,我们将对该时间序列数据进行差分处理,以消除趋势,确保数据平稳,然后使用 ARIMA 模型进行拟合。

# 差分以使数据平稳
data_diff = data.diff().dropna()

# 使用 ARIMA 模型进行拟合
model = ARIMA(data, order=(1, 1, 1))
results = model.fit()

# 输出模型摘要
print(results.summary())

 结果输出: 

 SARIMAX Results                                
==============================================================================
Dep. Variable:                  Sales   No. Observations:                  100
Model:                 ARIMA(1, 1, 1)   Log Likelihood                -379.852
Date:                Mon, 02 Sep 2024   AIC                            765.704
Time:                        21:36:34   BIC                            773.490
Sample:                    01-31-2020   HQIC                           768.854
                         - 04-30-2028                                         
Covariance Type:                  opg                                         
==============================================================================
                 coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
ar.L1         -0.1250      0.199     -0.628      0.530      -0.515       0.265
ma.L1         -0.4721      0.192     -2.461      0.014      -0.848      -0.096
sigma2       125.4660     18.589      6.750      0.000      89.033     161.899
===================================================================================
Ljung-Box (L1) (Q):                   2.96   Jarque-Bera (JB):                 0.73
Prob(Q):                              0.09   Prob(JB):                         0.70
Heteroskedasticity (H):               1.13   Skew:                            -0.19
Prob(H) (two-sided):                  0.73   Kurtosis:                         3.17
===================================================================================
# 进行未来12个月的预测
forecast = results.get_forecast(steps=12)
forecast_ci = forecast.conf_int()

# 绘制预测结果
plt.figure(figsize=(10, 6))
plt.plot(data, label='Observed Sales')
plt.plot(forecast.predicted_mean.index, forecast.predicted_mean, color='red', label='Forecasted Sales')
plt.fill_between(forecast_ci.index, forecast_ci.iloc[:, 0], forecast_ci.iloc[:, 1], color='red', alpha=0.3)
plt.title('ARIMA Model Sales Forecast')
plt.xlabel('Date')
plt.ylabel('Sales')
plt.legend()
plt.grid(True)
plt.show()

 结果输出:

4. 结果分析

原始数据

  • 数据图显示了销售额的逐月变化,数据中存在一个上升趋势,但没有明显的周期性波动。

差分处理

  • 差分操作消除了时间序列中的趋势成分,使数据变得平稳。

ARIMA 模型拟合

  • 使用 ARIMA(1, 1, 1) 模型对差分后的数据进行拟合,模型的摘要显示了模型参数的估计值和统计显著性。

预测结果

  • 预测图展示了未来 12 个月的销售额预测值,预测结果与过去的趋势一致,并且在预测区间内给出了置信区间,表示预测的不确定性。
5. 总结

这个案例展示了如何使用 ARIMA 模型分析和预测一个没有季节性但具有趋势的时间序列数据。通过差分处理使数据平稳,然后使用 ARIMA 模型进行拟合,可以有效地捕捉数据中的趋势并进行未来的预测。这个方法特别适用于分析没有明显季节性变化的业务数据,如销售额、库存水平等。

将LSTM和SARIMA进行串联或并联组可以提高时间序列测的准确性。下面分别介绍串联和并联组合的方法。 1. 串联组合(LSTM-SARIMA): - 使用LSTM模型对数据进行训练和预测。 - 将LSTM模型的预测结果作为输入,结合历史观测值,使用SARIMA模型进行进一步的预测。 - 可以通过迭代的方式,反复使用LSTM和SARIMA模型进行预测。 2. 并联组合(LSTM+SARIMA): - 使用LSTM模型SARIMA模型分别对数据进行训练和预测。 - 将LSTM模型SARIMA模型的预测结果进行加权融合,得到最终的预测结果。 - 加权融合可以根据实际情况使用简单的平均或者更复杂的加权策略。 下面是一个示例代码,演示了如何将LSTM和SARIMA进行串联组合: ```python import numpy as np import pandas as pd from statsmodels.tsa.arima.model import ARIMA from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense # 准备数据 # 假设我们有一组时间序列数据X X = ... # 输入序列数据,形状为 (样本数, 时间步长, 特征数) # 划分训练集和测试集 train_size = int(len(X) * 0.8) train_data, test_data = X[:train_size], X[train_size:] # LSTM模型训练和预测 lstm_model = Sequential() lstm_model.add(LSTM(units=50, input_shape=(train_data.shape[1], train_data.shape[2]))) lstm_model.add(Dense(units=1)) lstm_model.compile(loss='mean_squared_error', optimizer='adam') lstm_model.fit(train_data, train_data, epochs=100, batch_size=32) lstm_pred = lstm_model.predict(test_data) # SARIMA模型训练和预测 sarima_model = ARIMA(train_data, order=(1, 1, 1)) # 根据实际情况选择SARIMA模型的阶数 sarima_model_fit = sarima_model.fit() sarima_pred = sarima_model_fit.forecast(steps=len(test_data))[0] # 将LSTM和SARIMA的预测结果串联 combined_pred = np.concatenate((lstm_pred, sarima_pred), axis=0) # 可以根据需要对预测结果进行后处理 ``` 上述代码中,我们首先使用LSTM模型对训练数据进行训练,并预测测试数据的结果。然后,我们使用SARIMA模型对训练数据进行训练,并预测相同长度的测试数据。最后,将LSTM和SARIMA的预测结果串联在一起,得到最终的预测结果。 对于并联组合,只需将LSTM和SARIMA的预测结果进行加权融合即可。具体的加权融合方法可以根据实际情况进行选择和调整。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值