[洛谷1962]斐波那契数列

思路:

常见算法时矩阵快速幂,但事实上这题可以不需要矩阵快速幂。
设斐波那契数列为$f$,观察规律可以发现:
当$n$为偶数时,$f_n=(f_{n-1}\times 2+f_n)\times f_n$;
当$m$为奇数时,$f_n=f_{n+1}^2+f_n^2$。
这样只要用一个map记录已经计算过的Fibonacci数,递归求得答案即可。
再用一个hash_map跑得和标算一样快(0ms),而且内存更小。

 1 #include<cstdio>
 2 #include<ext/hash_map>
 3 const long long mod=1000000007;
 4 __gnu_cxx::hash_map<int,int> m;
 5 inline long long sqr(const long long x) {
 6     return x*x;
 7 }
 8 long long Fibonacci(const long long n) {
 9     if(m[n]) return m[n];
10     if(n==1||n==2) return m[n]=1;
11     if(n&1) return m[n]=(sqr(Fibonacci(n/2+1))+sqr(Fibonacci(n/2)))%mod;
12     return m[n]=(Fibonacci(n/2-1)*2+Fibonacci(n/2))*Fibonacci(n/2)%mod;
13 }
14 int main() {
15     long long n;
16     scanf("%lld",&n);
17     printf("%lld",Fibonacci(n));
18     return 0;
19 }

 

转载于:https://www.cnblogs.com/skylee03/p/7363190.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值