高性能框架gevent和gunicorn在web上的应用及性能测试

WSGI Server有哪些:


比如 Flask,webpy,Django、CherryPy 都带着 WSGI server 。当然性能都不好,自带的web server 更多的是测试用途, 线上发布时,则使用高性能的 wsgi server或者是联合nginx做uwsgi 。


诚如那个WSGI的定义所说的,协议定义了一套接口来实现服务器端与应用端通信的规范化(或者说是统一化)。这是怎样的一套接口呢?很简单,尤其是对于应用端。



更多关于wsgi server的介绍,请到我的个人博客看看,   http://xiaorui.cc


233615185.png

神器 Gunicorn是一个Python WSGI UNIX的HTTP服务器。这是一个预先叉工人模式,从Ruby的独角兽(Unicorn)项目移植。该Gunicorn服务器与各种Web框架兼容,我们只要简单配置执行,轻量级的资源消耗,以及相当迅速。它的特点是与各个web结合紧密,部署特别方便。 缺点也很多,不支持HTTP 1.1,并发访问性能不高。


安装 gunicorn  ~

pip install gunicorn


233931792.jpg


这里我们说下 gunicorn 的用法

最简单的运行方式就是:


gunicorn code:application


其中code就是指code.py,application就是那个wsgifunc的名字。


这样运行的话, gunicorn 默认作为一个监听 127.0.0.1:8000 的web server,可以在本机通过: http://127.0.0.1:8000 访问。



如果要通过网络访问,则需要绑定不同的地址(也可以同时设置监听端口):


gunicorn -b 10.2.20.66:8080 code:application
#from http://rfyiamcool.blog.51cto.com


在多核服务器上,为了支持更多的并发访问并充分利用资源,可以使用更多的 gunicorn 进程:


gunicorn -w 8 code:application


这样就可以启动8个进程同时处理HTTP请求,提高系统的使用效率及性能。


另外, gunicorn 默认使用同步阻塞的网络模型(-k sync),对于大并发的访问可能表现不够好, 它还支持其它更好的模式,比如:gevent或meinheld。

源地址 http://rfyiamcool.blog.51cto.com/1030776/1276364

#  gevent

gunicorn -k gevent code:application

#  meinheld

gunicorn -k egg:meinheld#gunicorn_worker code:application

当然,要使用这两个东西需要另外安装,具体请参考各自的文档。


以上设置还可以通过 -c 参数传入一个配置文件实现。


gunicorn 的配置文件

[root@66 tmp]# cat gun.conf
import os
bind = '127.0.0.1:5000'
workers = 4
backlog = 2048
worker_class = "sync"
debug = True
proc_name = 'gunicorn.proc'
pidfile = '/tmp/gunicorn.pid'
logfile = '/var/log/gunicorn/debug.log'
loglevel = 'debug'



python web 一个例子

[root@66 tmp]# cat xiaorui.py
from flask import Flask
from flask import render_template_string
import os
from werkzeug.contrib.fixers import ProxyFix
app = Flask(__name__)
@app.route('/')
def index():
    return "worked!"
app.wsgi_app = ProxyFix(app.wsgi_app)
if __name__ == '__main__':
    app.run()


先跑本身的demo ~

234808791.jpg

源地址 http://rfyiamcool.blog.51cto.com/1030776/1276364

结果是:

235039970.jpg


结果还算可以~    当然跑的实例也简单~


235359529.jpg

235401467.jpg


cpu的损耗,不小哈~

其次的问题是,flask的web server在压力下出现回应的错误。。。 我以前测试 tornado web.py flask django botto的压力,让朋友写的cc工具做的测试。。。

结果是  tornado确实很牛,然后是flask,接着是web.py,最烂的是django

django本身的抗压确实让人蛋疼,还好大家在nginx做负载。

235559547.jpg

单实例测试完了,咱们开始测试 高性能神器 gunicorn 做wsgi

000510390.jpg


启动后会出现:

2013-08-12 21:59:34 [2097] [INFO] Starting gunicorn 17.5
2013-08-12 21:59:34 [2097] [DEBUG] Arbiter booted
2013-08-12 21:59:34 [2097] [INFO] Listening at: http://127.0.0.1:5000 (2097)
2013-08-12 21:59:34 [2097] [INFO] Using worker: sync
2013-08-12 21:59:34 [2102] [INFO] Booting worker with pid: 2102
2013-08-12 21:59:34 [2103] [INFO] Booting worker with pid: 2103
2013-08-12 21:59:34 [2104] [INFO] Booting worker with pid: 2104
2013-08-12 21:59:34 [2105] [INFO] Booting worker with pid: 2105


我们再来测试下性能~

000902117.jpg



上次用了6秒左右,这次用gunicorn达到了2.4秒左右。。。。。 这速度对比,已经很明了了~

要是还想提高速度,可以改gun.conf配置文件中的worker数目。


cpu的损耗是平均到各个进程,而不是独立在flask的web server上


001504251.jpg



现在我们开始测试gevent 作为wsgi 网关接口的实力~


flask的一个demo~

004147980.jpg


gevent wsgi的配置,我先简单的做下配置。。。。

大家想看实例的话,可以去gevent的官网的wsgi的demo   那边还附有编程的接口。。。


from gevent.wsgi import WSGIServer
from a import app
http_server = WSGIServer(('', 11111), app)
http_server.serve_forever()


源地址 http://rfyiamcool.blog.51cto.com/1030776/1276364

我们开始测试更牛逼的gevent的并发能力 。

服务端:

004349743.jpg

客户端:

004720279.jpg


看到秒数了吧~    啥也不说了~    大家都懂了~

我们稍微调节一下~

005459920.jpg


事实上, gunicorn 调用 gevent workers 的代码类似这样的原理(uwsgi+gevent 也是差不多的做法).


http://xiaorui.cc/2014/11/22/%E7%94%A8gunicorn%E5%92%8Cgevent%E6%8F%90%E9%AB%98python-web%E6%A1%86%E6%9E%B6%E7%9A%84%E6%80%A7%E8%83%BD/


uwsgi现在也支持gevent的方式:


uwsgi --plugins python,gevent --gevent 100 --socket :3031 --module myapp



总之,gunicorn和gevent,或者是gunicorn+gevent的合体 都是很值得尝试的东西。


源地址 http://rfyiamcool.blog.51cto.com/1030776/1276364


下图是我推荐的网络框架~ 这个框架和uwsgi的方式很像的,都是在nginx pass_proxy到app的前端口,然后用uwsgi或者是gunicorn来协同处理 。


002728214.png



server {
    listen 80;
    server_name xiaorui.cc;
                                                                                                                                                                                                                                                                                                                                                                                  
    root /www/xiaorui;
                                                                                                                                                                                                                                                                                                                                                                                  
    access_log xiaorui/access.log;
    error_log xiaorui/error.log;
                                                                                                                                                                                                                                                                                                                                                                                  
    location / {
        proxy_set_header X-Forward-For $proxy_add_x_forwarded_for;
        proxy_set_header Host $http_host;
        proxy_redirect off;
        if (!-f $request_filename) {
            proxy_pass http://127.0.0.1:8000;
            break;
        }
    }




前端Nginx负载,几个核就跑几个Gunicorn进程,gunicorn相对后面的app又可以给出几个进程。

比起uWSGI来说,Gunicorn对于“协程”也就是Gevent的支持会更好更完美。

方便以后业务的扩展和运营精细化。性能上Gunicorn+Gevent不会比uWSGI弱多少,毕竟后者纯C能只有这么点性能也不容易,比起WSGI Server里面最强的Bjoern而言,Gunicorn也有对应的Meinheld这种利器,况且后者对于HTTP协议的支持比Bjoern更完善。Gevent虽然不是异步框架里面性能最好的,但是绝对是最完善的,社区活跃度也非常高,加上方便的monkey_patch,使得大多数应用不用改代码就能方便地平移过来。这2者结合可以就保证了稳定性,又能有较好性能的组合。


想简单扩展就用 Gunicorn+Gevent,想麻烦折腾就用nginx 做uwsgi或gunicorn的组合 。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值