题目:
The set [1,2,3,…,n]
contains a total of n! unique permutations.
By listing and labeling all of the permutations in order,
We get the following sequence (ie, for n = 3):
"123"
"132"
"213"
"231"
"312"
"321"
Given n and k, return the kth permutation sequence.
Note: Given n will be between 1 and 9 inclusive.
题解:
发现数学规律。
首先先捋捋这道题要干啥,给了我们n还有k,在数列 1,2,3,... , n构建的全排列中,返回第k个排列。
题目告诉我们:对于n个数可以有n!种排列;那么n-1个数就有(n-1)!种排列。
那么对于n位数来说,如果除去最高位不看,后面的n-1位就有 (n-1)!种排列。
所以,还是对于n位数来说,每一个不同的最高位数,后面可以拼接(n-1)!种排列。
所以你就可以看成是按照每组(n-1)!个这样分组。
利用 k/(n-1)! 可以取得最高位在数列中的index。这样第k个排列的最高位就能从数列中的index位取得,此时还要把这个数从数列中删除。
然后,新的k就可以有k%(n-1)!获得。循环n次即可。
同时,为了可以跟数组坐标对其,令k先--。
代码如下:
2 k--; // to transfer it as begin from 0 rather than 1
3
4 List<Integer> numList = new ArrayList<Integer>();
5 for( int i = 1; i<= n; i++)
6 numList.add(i);
7
8 int factorial = 1;
9 for( int i = 2; i < n; i++)
10 factorial *= i;
11
12 StringBuilder res = new StringBuilder();
13 int times = n-1;
14 while(times>=0){
15 int indexInList = k/factorial;
16 res.append(numList.get(indexInList));
17 numList.remove(indexInList);
18
19 k = k%factorial; // new k for next turn
20 if(times!=0)
21 factorial = factorial/times; // new (n-1)!
22
23 times--;
24 }
25
26 return res.toString();
27 }
Reference:
http://blog.csdn.net/linhuanmars/article/details/22028697
http://blog.csdn.net/fightforyourdream/article/details/17483553
http://blog.csdn.net/u013027996/article/details/18405735