next_permutation函数

排序可能会用到的一个函数,来自C++STC,直接调用可以说很方便的解决了一些排序问题

这是一个求一个排序的下一个排列的函数,可以遍历全排列,要包含头文件<algorithm>
下面是以前的笔记   与之完全相反的函数还有prev_permutation
 
 
(1) int 类型的next_permutation
 
int main()
{
 int a[3];
a[0]=1;a[1]=2;a[2]=3;
 do
{
cout<<a[0]<<""<<a[1]<<""<<a[2]<<endl;
} while (next_permutation(a,a+3)); //参数3指的是要进行排列的长度
 
//如果存在a之后的排列,就返回true。如果a是最后一个排列没有后继,返回false,每执行一次,a就变成它的后继
 
 
}
 
输出:
 
 1 2 3
 1 3 2
 2 1 3
 2 3 1
 3 1 2
 3 2 1
 
 
如果改成 while(next_permutation(a,a+2));
则输出:
 1 2 3
 2 1 3
 
只对前两个元素进行字典排序
显然,如果改成 while(next_permutation(a,a+1)); 则只输出:1 2 3
 
 
 
若排列本来就是最大的了没有后继,则next_permutation执行后,会对排列进行字典升序排序,相当于循环
 
 int list[3]={3,2,1};
next_permutation(list,list+3);
cout<<list[0]<<""<<list[1]<<""<<list[2]<<endl;
 
//输出: 1 2 3

 
 
 
 
(2) char 类型的next_permutation
 
int main()
{
 char ch[205];
cin >> ch;
 
sort(ch, ch + strlen(ch) );
//该语句对输入的数组进行字典升序排序。如输入9874563102cout<<ch;将输出0123456789,这样就能输出全排列了
 
 char *first = ch;
 char *last = ch + strlen(ch);
 
 do {
cout<< ch<< endl;
}while(next_permutation(first, last));
 return 0;
}
 
//这样就不必事先知道ch的大小了,是把整个ch字符串全都进行排序
//若采用 while(next_permutation(ch,ch+5));如果只输入1562,就会产生错误,因为ch中第五个元素指向未知
//若要整个字符串进行排序,参数5指的是数组的长度,不含结束符

 
 
 
 
 
(3) string 类型的next_permutation
 
int main()
{
 string line;
 while(cin>>line&&line!="#")
{
 if(next_permutation(line.begin(),line.end()))//从当前输入位置开始
cout<<line<<endl;
 elsecout<<"Nosuccesor\n";
}
}
 
 
 
int main()
{
 string line;
 while(cin>>line&&line!="#")
{
sort(line.begin(),line.end());//全排列
cout<<line<<endl;
 while(next_permutation(line.begin(),line.end()))
cout<<line<<endl;
}
}
 
 
 
 
 
 
 next_permutation 自定义比较函数
 
 
#include<iostream> //poj 1256Anagram
#include<string>
#include<algorithm>
using namespace std;
int cmp(char a,char b)//'A'<'a'<'B'<'b'<...<'Z'<'z'.
{
 if(tolower(a)!=tolower(b))
 returntolower(a)<tolower(b);
 else
 return a<b;
}
int main()
{
 char ch[20];
 int n;
cin>>n;
 while(n--)
{
scanf("%s",ch);
sort(ch,ch+strlen(ch),cmp);
 do
{
printf("%s\n",ch);
}while(next_permutation(ch,ch+strlen(ch),cmp));
}
 return 0;
}

来自新浪博客

Nowornever_QWQ

的归纳


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值