求首位相连二维数组最大子矩阵的和

结对成员:侯涛亮:主要负责程序设计编写代码。

                  朱少辉:主要负责程序调试和修改。

题目:一个首尾相接的二维数组,其中有有正数,有负数,求它的最大子矩阵。

思路:该题的解决方法是求二维数组最大子矩阵的和与求一维首位相连最大子数组和结合。求解环的最大子数组可分为两种情况。第一种:当数组下标没有越界,。第二种情况是数组越界。

代码:

#include<iostream>
using namespace std;

int MAX(int s[],int n)
{
    int i,sum=0,max=s[0];
    for(i=0;i<n;i++)
    {
        if(sum>0)
        {
            sum=sum+s[i];
        }
        else
        {
            sum=s[i];
        }
        if(sum>max)
        {
            max=sum;
        }
    }
    return max;
}

int MIN(int s[],int n)
{
    int i,sum=0,min=s[0];
    for(i=1;i<n;i++)
    {
        if(sum<0)
        {
            sum=sum+s[i];
        }
        else
        {
            sum=s[i];
        }
        if(sum<min)
        {
            min=sum;
        }
    }
    return min;
}

int SUM(int s[],int n)
{
    int i,sum=0;
    for(i=0;i<n;i++)
    {
        sum=sum+s[i];
    }
    return sum;
}

void main()
{
    int m,n,i,j,a[100][100];
    cout<<"请输入矩阵的大小(m*n):";
    cin>>m>>n;
    cout<<"请输入矩阵:"<<endl;
    for(i=0;i<m;i++)
    {
        for(j=0;j<n;j++)
        {
            cin>>a[i][j];
        }
    }
    int sum,max,s[100],k=0,min,p=a[0][0];
    for(i=0;i<m;i++)
    {
        for(j=0;j<n;j++)
        {
            s[j]=0;
        }
        while(k+i<m)
        {
            for(j=0;j<n;j++)
            {
                s[j]=s[j]+a[k+i][j];
            }
            sum=SUM(s,n);
            min=MIN(s,n);
            max=MAX(s,n);
            if(sum-min>max)
            {
                max=sum-min;
            }
            if(max>p)
            {
                p=max;
            }
            k++;
        }
        k=0;
    }
    cout<<"子矩阵最大值为"<<p<<endl;
}

截图

总结:解决这道题的关键是这求二维数组最大子矩阵的和与求一维首位相连最大子数组和这两道题的整合,要学会用函数的方法来整合程序。先弄懂每个模块再对每个模块进行组合。

转载于:https://www.cnblogs.com/bingoing/p/4439555.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值