峰值旁瓣比和积分旁瓣比说明了什么_语音特征MFCC提取(1)不了解信号也能看懂到底在干什么...

本文旨在为没有信号处理背景的读者介绍MFCC(梅尔频率倒谱系数)提取的基本步骤,包括采样、预处理、分帧、加窗等,帮助理解这些概念,并通过通俗的语言降低理解难度。尽管描述简洁,但建议在形成基本认识后,进一步查阅专业资料深化理解。
摘要由CSDN通过智能技术生成

做语音识别的工作,学习的第一步应该就是特征提取。但是对于一个没学过信号处理的同学(我)来说,什么信号旁瓣、功率谱、频谱泄露都没有概念。

第一步就走得异常艰难,所以经历过这份痛的我决定写一篇文章,唯一的目的就是让不了解MFCC提取的同学读完这篇文章能够有一个感性认识,从而在今后接触到该内容时知道“什么是什么”,继而有更深的理解。

所以我会用非常通俗也因此不严谨的话介绍MFCC提取过程,读者建立大致概念后建议去读一些专业的资料。同时如果你发现了本篇有错误的地方,欢迎指正,我会换一个正确的说法尽可能做到通俗的同时保证严谨。

采样:从连续的语音信号到一个个离散的点

bfc36488be72fc17b6db56af86068ad0.png

像这张图所示,左图是模拟信号,所谓模拟信号就是连续的信号,比如一天中温度随时间的变换。但是计算机无法处理这种密不可分的数据,因此我们需要将左图的连续信号转换成离散信号,也就是一个个单独的点,即一天中每隔1秒的温度各是多少

这个从左图到右图的转换叫做ADC(Analog to Digital Converter,数模转换)

但是这个转换过程并不是随意取一个时间间隔去采样就行,而是要遵循一定要求。奈奎斯特采样定律要求采样频率大于原始频率的两倍。换句话说就是在原始信号的一个周期内至少要采样两个点。在非周期性信号中࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值