寻找水王问题

题目:

三人行设计了一个灌水论坛。信息学院的学生都喜欢在上面交流灌水,传说在论坛上有一个“水王”,他不但喜欢发帖,还会回复其他ID发的每个帖子。坊间风闻该“水王”发帖数目超过了帖子数目的一半。
如果你有一张当前论坛的帖子(包括回帖)列表,其中帖子的作者的ID也在其中,你能快速的找到这个传说中的水王吗?

思路:

开始的时候我想了一个特别偏的方法,因为题目中有一句话是每个帖子里面都有水王回复楼层,所以在帖子里面寻找出现id次数最多的那就是水王,但是这样下来的话工作量特别的大,不仅是每个帖子之间要比较而且每个帖子之内还是要比较,后来同学们提供了那个思路,我觉得比我的更简化,所以我才用了他的思路,我简单介绍一下这个思路吧,水王发帖数目超过了所有帖子数目的一半,每次从列表中删除两个不同的ID,那么剩下的ID里面,水王的ID出现次数仍然超过剩余数目的一半,因此每次删除两个不同的ID,直到剩下的所有ID都相同,那么剩下的就是水王的ID。这个思路确实挺简单的。

代码。

 

#include<iostream>
using namespace std;

int find(int* p, int n)
{
    int a = 0,b=0;
    for (int i = 0; i < n; ++i)
    {
        if (a == 0 || b == 0)
        {
            a = p[i];
            b++;
        }
        else if (p[i] == a)
            b++;
        else
            b--;
    }
    return a;
}
int main()
{
    int i = 0, n, m[100];
    cout << "输入帖子数目:";
    cin >> n;
    cout << "输入所有帖子ID:";
    for (i = 0; i < n; i++)
    {
        cin >> m[i];
    }
    int k = find(m, n);
    cout << "水王的ID是:"<<k<<endl;
    return 0;
}

好的想法要借鉴,也要有自己的想法,即使是错的也是有意义的。

转载于:https://www.cnblogs.com/jump/p/4536509.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 支持向量机非线性回归通用MATLAB程序解析 #### 一、概述 本文将详细介绍一个基于MATLAB的支持向量机(SVM)非线性回归的通用程序。该程序采用支持向量机方法来实现数据的非线性回归,并通过不同的核函数设置来适应不同类型的数据分布。此外,该程序还提供了数据预处理的方法,使得用户能够更加方便地应用此程序解决实际问题。 #### 二、核心功能与原理 ##### 1. 支持向量机(SVM) 支持向量机是一种监督学习模型,主要用于分类和回归分析。对于非线性回归任务,SVM通过引入核技巧(kernel trick)将原始低维空间中的非线性问题转换为高维空间中的线性问题,从而实现有效的非线性建模。 ##### 2. 核函数 核函数的选择直接影响到模型的性能。本程序内置了三种常用的核函数: - **线性核函数**:`K(x, y) = x'y` - **多项式核函数**:`K(x, y) = (x'y + 1)^d` - **径向基函数(RBF)**:`K(x, y) = exp(-γ|x - y|^2)` 其中RBF核函数被广泛应用于非线性问题中,因为它可以处理非常复杂的非线性关系。本程序默认使用的是RBF核函数,参数`D`用于控制高斯核函数的宽度。 ##### 3. 数据预处理 虽然程序本身没有直接涉及数据预处理的过程,但在实际应用中,对数据进行适当的预处理是非常重要的。常见的预处理步骤包括归一化、缺失值处理等。 ##### 4. 模型参数 - **Epsilon**: ε-insensitive loss function的ε值,控制回归带宽。 - **C**: 松弛变量的惩罚系数,控制模型复杂度与过拟合的风险之间的平衡。 #### 三、程序实现细节 ##### 1. 函数输入与输出 - **输入**: - `X`: 输入特征矩阵,维度为(n, l),其中n是特征数量,l是样本数量。 - `Y`: 目标值向量,长度为l。 - `Epsilon`: 回归带宽。 - `C`: 松弛变量的惩罚系数。 - `D`: RBF核函数的参数。 - **输出**: - `Alpha1`: 正的拉格朗日乘子向量。 - `Alpha2`: 负的拉格朗日乘子向量。 - `Alpha`: 拉格朗日乘子向量。 - `Flag`: 标记向量,表示每个样本的类型。 - `B`: 偏置项。 ##### 2. 核心代码解析 程序首先计算所有样本间的核矩阵`K`,然后构建二次规划问题并求解得到拉格朗日乘子向量。根据拉格朗日乘子的值确定支持向量,并计算偏置项`B`。 - **核矩阵计算**:采用RBF核函数,通过`exp(-(sum((xi-xj).^2)/D))`计算任意两个样本之间的相似度。 - **二次规划**:构建目标函数和约束条件,使用`quadprog`函数求解最小化问题。 - **支持向量识别**:根据拉格朗日乘子的大小判断每个样本是否为支持向量,并据此计算偏置项`B`。 #### 四、程序扩展与优化 - **多核函数支持**:可以通过增加更多的核函数选项,提高程序的灵活性。 - **自动调参**:实现参数自动选择的功能,例如通过交叉验证选择最优的`Epsilon`和`C`值。 - **并行计算**:利用MATLAB的并行计算工具箱加速计算过程,特别是当样本量很大时。 #### 五、应用场景 该程序适用于需要进行非线性回归预测的场景,如经济预测、天气预报等领域。通过调整核函数和参数,可以有效应对各种类型的非线性问题。 ### 总结 本程序提供了一个支持向量机非线性回归的完整实现框架,通过灵活的核函数设置和参数调整,能够有效地处理非线性问题。对于需要进行回归预测的应用场景,这是一个非常实用且强大的工具。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值