总结:
1. 顺序写入
因为硬盘是机械结构,每次读写都会寻址->写入,其中寻址是一个“机械动作”,它是最耗时的。所以硬盘最“讨厌”随机I/O,最喜欢顺序I/O。
为了提高读写硬盘的速度,Kafka就是使用顺序I/O。如果一个topic建立多个分区那么每个parathion都是一个文文件,收到消息后Kafka会把数据插入到文件末尾。
2. Memory Mapped Files(内存映射文件)
64位操作系统中一般可以表示20G的数据文件,它的工作原理是直接利用操作系统的Page来实现文件到物理内存的直接映射。完成映射之后你对物理内存的操作会被同步到硬盘上
3. 高性能的日志存储
有两大法宝:分段、索引
-
数据文件的分段
Kafka解决查询效率的手段之一是将数据文件分段。
比如有100条Message,它们的offset是从0到99。假设将数据文件分成5段,第一段为0-19,第二段为20-39,以此类推,每段放在一个单独的数据文件里面,数据文件以该段中最小的offset命名
。
这样在查找指定offset的Message的时候,用二分查找
就可以定位到该Message在哪个段中。 -
为数据文件创建索引
数据文件分段使得可以在一个较小的数据文件中查找对应offset的Message了,但是这依然需要顺序扫描才能找到对应offset的Message。为了进一步提高查找的效率,Kafka为每个分段后的数据文件建立了索引文件,文件名与数据文件的名字是一样的,只是文件扩展名为.index。相对offset: 因为数据文件分段以后,每个数据文件的起始offset不为0,相对offset表示这条Message相对于其所属数据文件中最小的offset的大小。 举例,分段后的一个数据文件的offset是从20开始,那么offset为25的Message在index文件中的相对offset就是25-20 = 5。存储相对offset可以减小索引文件占用的空间。 position: 表示该条Message在数据文件中的绝对位置。只要打开文件并移动文件指针到这个position就可以读取对应的Message了。 复制代码
index文件中并没有为数据文件中的每条Message建立索引,而是采用了稀疏存储的方式,每隔一定字节的数据建立一条索引。这样避免了索引文件占用过多的空间,从而可以将索引文件保留在内存中。
但缺点是没有建立索引的Message也不能一次定位到其在数据文件的位置,从而需要做一次顺序扫描,但是这次顺序扫描的范围就很小了。小结:
我们以几张图来总结一下Message是如何在Kafka中存储的,以及如何查找指定offset的Message的。
partition是分段的,每个段叫LogSegment,包括了一个数据文件和一个索引文件
Message是按照topic来组织,每个topic可以分成多个的partition
比如:有5个partition的名为为page_visits的topic的目录结构为:
下图是某个partition目录下的文件: 可以看到,这个partition有4个LogSegment。简单介绍一下如何查找Message的:
比如:要查找绝对offset为911的Message:
如下,假设有1000条消息,每个LogSegment大小为100,下面展现了900-1000的index和log:1. 用二分查找确定它是在哪个LogSegment中 2. 打开这个Segment的index文件,也是用二分法查找 (911-900) =11这个索引或者小于11最近的索引在这里我们找到了索引是[10,1367] 3. 打开log文件,从位置为1367的那个地方开始顺序扫描直到找到offset为911的那条Message。 复制代码
这套机制是建立在offset是有序的。索引文件被映射到内存中,所以查找的速度还是很快的。
一句话,Kafka的Message存储采用了分区(Partition),分段(LogSegment)和稀疏索引(SparseIndex)这几个手段来达到了高效性
。