自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1259)
  • 资源 (10)
  • 论坛 (1)
  • 收藏
  • 关注

转载 百度发布全球首个大规模隐变量对话模型PLATO

http://www.techweb.com.cn/ucweb/news/id/2785497百度于去年10月公布的通用领域对话生成预训练模型PLATO,最近已正式被ACL 2020接收。PLATO是业界首个基于隐空间(Latent Space)的端到端预训练对话生成模型。据悉,该模型利用隐向量来表示对话的潜在方向,从而达到对话内容丰富度和流畅度的显著提升。针对具体对话任务,基于PLATO可以用少量数据训练得到非常流畅的对话系统。论文名称PLATO: Pre-trained Dialogue Gen

2020-11-24 16:41:23 7

转载 jieba-基于TextRank关键词提取的实现

对每个句子进行分词和词性标注处理 过滤掉除指定词性外的其他单词,过滤掉出现在停用词表的单词,过滤掉长度小于2的单词 将剩下的单词中循环选择一个单词,将其与其后面4个单词分别组合成4条边。例如:[‘有’,‘媒体’, ‘曝光’,‘高圆圆’, ‘和’, ‘赵又廷’,‘现身’, ‘台北’, ‘桃园’,‘机场’,‘的’, ‘照片’]对于‘媒体‘这个单词,就有(‘媒体’, ‘曝光’)、(‘媒体’, ‘圆’)、(‘媒体’, ‘和’)、(‘媒体’, ‘赵又廷’)4条边,且每条边权值为1,当这条边在之后再次出现时,权值

2020-11-24 09:58:24 13

转载 Learning to Select Knowledge for Response Generation in Dialog Systems

文章目录 Abstract 1 Introduction 2 Model 2.1 Background: Seq2Seq and Attention 2.2 Architecture Overview 2.3 Encoder 2.4 Knowledge Manager 2.5 Decoder 2.6 Loss Function 3 Experiments 3.1 Dataset 3.2 Models for Comparison

2020-11-10 15:42:00 30

转载 ##好好好啊####一文看懂 Attention(本质原理+3大优点+5大类型)

Attention 的本质是什么Attention(注意力)机制如果浅层的理解,跟他的名字非常匹配。他的核心逻辑就是「从关注全部到关注重点」。Attention的本质Attention 机制很像人类看图片的逻辑,当我们看一张图片的时候,我们并没有看清图片的全部内容,而是将注意力集中在了图片的焦点上。大家看一下下面这张图:人眼看图片我们一定会看清「锦江饭店」4个字,如下图:视觉焦点在锦江饭店但是我相信没人会意识到「锦江饭店」上面还有一串「电话号码」,也不会意识到「喜运来

2020-11-06 09:46:13 215

原创 再谈权重共享

之前在几篇博客中说到了权重共享,但都觉得不够全面,这里做个专题,以后有新的理解都在此更新。1. 减少运算只是锦上添花之前说到权重共享可以减少运算,是的,但这样说好像是可有可无,只是运算量大小的问题,其实不是可有可无的。2. 权重共享的本质是特征提取之前说到权重就是模板,我们按照一定的模板来与样本进行比对,看看有没有与模板一致的外在表现(特征)3. 权重共享使得模型泛化普通的神经网络输入是固定的,而权重共享可以使得输入不固定。比如很多张图像,每张图像上有个人脸,但...

2020-11-03 17:07:28 30

原创 为什么残差连接的网络结构更容易学习

作者:言有三链接:https://www.zhihu.com/question/306135761/answer/683325207来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。关于残差网络为什么有效,研究众多,这里我们就集中讲述几个主流的思路。1、简化了学习过程,增强了梯度传播相比于学习原始的信号,残差网络学习的是信号的差值,这在许多的研究中被验证是更加有效的,它简化了学习的过程。根据我们前面的内容可知,在一定程度上,网络越深表达能力越强,性能越好.

2020-11-03 14:50:48 201

转载 基于BERT的超长文本分类模型

基于BERT的超长文本分类模型0.Abstract 1.任务介绍 数据集 评估方法 测试集 2.数据初步处理 3.Baseline模型 4. 数据进一步处理 分割文本 4.最终模型 第一部分: BERT 第二部分: LSTM + FC 最终效果和一些小节 5. 进一步拓展: BERT + Transformer0.Abstract本文实.

2020-10-29 16:38:53 115

原创 sentencepiece原理与实践

1 前言前段时间在看到XLNET,Transformer-XL等预训练模式时,看到源代码都用到sentencepiece模型,当时不清楚。经过这段时间实践和应用,觉得这个方法和工具值得NLP领域推广和应用。今天就分享下sentencepiece原理以及实践效果。2 原理sentencepiece由谷歌将一些词-语言模型相关的论文进行复现,开发了一个开源工具——训练自己领域的sentencepiece模型,该模型可以代替预训练模型(BERT,XLNET)中词表的作用。开源代码地址为:https:/

2020-10-28 10:05:43 131

转载 关于batch normalization和layer normalization的理解

目录一、batch normalization和layer normalization的动机二、BN和LN的框架原理2.1BN和LN的具体操作原理2.2BN和LN的优点和不足2.3BN和LN的不同2.4BN和LN的实例代码展示三、Bert、Transformer中为何使用的是LN而很少使用BN3.1第一个解释3.2第二个解释 在深度学习中经常看到batch normalization的使用,在Bert模型里面经常看到layer normalization...

2020-10-28 09:43:04 31

转载 Facebook 号称击败谷歌,推出最强聊天机器人

By 超神经场景描述:Facebook 近日开源了新的聊天机器人 Blender,表现优于现有对话机器人,更具个性化。关键词:Facebook 聊天机器人 Blender4 月 29 日,Facebook AI 和机器学习部门 FAIR 发布博客宣布,经过多年研究,他们已近构建并开源了一个新的聊天机器人 Blender。Blender 结合了多种对话技能,包括个性、知识和同理心,能够使 AI 更具人性化。击败谷歌 Meena,更像人类FAIR 声称Blender 是 Git...

2020-10-27 09:57:26 87

转载 端到端问答新突破:百度提出RocketQA,登顶MSMARCO榜首

开放域问答(Open-domain QA)一直是自然语言处理领域的重要研究课题。百度从面向端到端问答的检索模型出发,提出了RocketQA训练方法,大幅提升了对偶式检索模型的效果,为实现端到端问答迈出了重要的一步。RocketQA已逐步应用在百度搜索、广告等核心业务中,并将在更多场景中发挥作用。近日,百度提出了面向端到端问答的检索模型训练方法 RocketQA,该方法针对模型训练中存在的问题,通过跨批次负采样(cross-batch negatives)、去噪的强负例采样(denoised hard n

2020-10-23 14:51:08 18

转载 百度发布首个大规模隐变量对话模型PLATO

百度于去年10月公布的基于飞桨开源深度学习平台开发的通用领域对话生成预训练模型PLATO,相关论文最近已正式被ACL 2020接收。PLATO是业界首个基于隐空间(Latent Space)的端到端的预训练对话生成模型。据悉,该模型利用隐向量来表示对话的潜在方向,从而达到对话内容丰富度和流畅度的显著提升。针对具体的对话任务,基于PLATO可以用少量数据训练得到非常流畅的对话系统。论文名称:PLATO:Pre-trained Dialogue Generation Model with Discr

2020-10-22 14:07:34 27

转载 对话智能新高度:百度发布超大规模开放域对话生成网络PLATO-2

机器之心发布机器之心编辑部近日,百度发布对话生成网络 PLATO-2,宣布在开放域对话生成模型上迎来重要进展。PLATO-2 承袭 PLATO 隐变量进行回复多样化生成特性,模型参数高达 16 亿,涵盖中英文版本,可就开放域话题深度畅聊。实验结果显示,PLATO-2 中英文对话效果已超越谷歌 Meena、微软小冰和 Facebook Blender 等先进模型。百度 NLP 于去年 10 月预公布了通用领域的对话生成预训练模型 PLATO,近期在 ACL 2020 上展示。最近,百度又新发布了超

2020-10-22 10:33:32 208

转载 基于知识图谱推理的关系推演

对于知识图谱的关注可以分为两个方面:知识图谱的构建和基于知识图谱数据结构的应用。知识图谱的构建主要关注如何整合结构化、非结构化的数据,实现用统一的语义数据结构如三元组RDF形式的数据存储。基于知识图谱的应用主要关注如何从这种语义数据结构中挖掘、发现、推演出相关的隐藏知识或新知识或者实现更上层的应用如搜索、问答、决策、推荐等,具体可以参考《三个角度理解知识图谱》。本文主要讲一下基于知识图谱推理的关系推演(或者叫做关系预测),主要包括如下几个方面:1、知识图谱推理的主要作用;2、知识图谱推理的基本原理;

2020-10-15 11:07:15 240

转载 【比赛分享】刷新CoQA榜单纪录:基于对抗训练和知识蒸馏的机器阅读理解方案解析

本文首发于机器之心微信公众号,专栏留存。近日,在由斯坦福大学发起的对话式问答挑战赛 CoQA (Conversational Question Answering Challenge)中,追一科技AI Lab团队超越微软团队成为榜单第一[1],刷新了之前微软等团队创造的CoQA纪录。值得注意的是,团队提交的技术方案中,单模型的各项指标表现首次全面超越人类。CoQA Leaderboard一直以来,机器阅读理解都是自然语言处理界最受关注、进步最快的技术方向之一,主要有两大比赛较受瞩目,分别

2020-09-30 09:33:12 65

转载 ###haohaohao####揭秘认知图谱!从多跳阅读理解问答开始

【ACL 2019】揭秘认知图谱!从多跳阅读理解问答开始Phoenix Cat劝退人工智能新天坑“机器的阅读理解与问答”一直以来被认为是“自然语言理解(NLU)”的核心问题之一,随着BERT等模型的兴起,单段落的简单阅读理解任务取得了重大突破;研究者将目光转向更能体现机器智能的“多跳”“复杂”情形。本篇论文介绍了基于认知中“双过程理论(dual process theory)”的CogQA模型,文章提出一种新颖的迭代框架:算法模拟认知学中人类的两个认知系统,并维护一张认知图谱(Cogni..

2020-09-27 15:18:55 62

转载 论文笔记--Multi-Passage Machine Reading Comprehension with Cross-Passage Answer Verification (V-Net)

First published on indexfziq.github.io at 2019-03-08 14:00:00Introduction本文出自Baidu NLP Research,在MS MARCO的V1版本上是第二;V2版本上QA任务是第三,well-formed任务是第二。代码没公开,基本的思想就是提出两个辅助任务,辅助抽取更好的答案片段。Motivation这篇文章的动机很直接,文章对数据进行分析,提出一种假设:正确的答案往往在10个摘要中出现频率高,且具有很大的相似性;然

2020-09-25 09:03:21 49

转载 【图机器学习】4篇 Graph Embedding 重要论文

第一篇:Deep WalkDeepWalk: Online Learning of Social Representations(2014,Bryan Perozzi)算法做什么的?输入:一个 graph 输出:每个节点对应的向量算法优点信息缺失下表现良好 数据稀疏的情况下表现良好 可用于大规模计算(算法可以并行化)social representations我们想让 social representations 有这样的特点Adaptability:真实世..

2020-09-14 16:47:44 67

转载 机器阅读理解(MRC)和问答(QA)在信息抽取中的应用

一 机器阅读理解(MRC)、问答系统(QA)与信息抽取最近实体关系抽取任务和命名实体识别任务的SOTA模型排行榜中,有很多模型使用到了机器阅读理解(MRC)和问答系统(QA)中思想和方法,如HBT、ETL-span、Multi-turn QA和BERT_MRC等,MRC和QA中的思想和方法的使用,让这些模型相比于传统方法有很大提升。在实体关系抽取任务中,最新的一些模型,如HBT和ETL-span,用到了MRC中经常使用的指针网络方法,通过多层标注序列解决实体重叠问题;Multi-turn QA则使用

2020-09-11 14:24:51 328

转载 机器学习-社区发现算法介绍(一):Infomap

在诸多互联网金融风控的场景里,团伙识别是相当重要的一项工作。如果恶意攻击者以团伙的方式尝试获取利益,比如骗贷、骗保、薅羊毛,通常都会给对应的公司带来不小的经济损失。团伙识别有各种各样的方法,其中最主要的方法就是“社区发现”(community detection)类算法,常规的方法有 Louvain,Label Propagation,Infomap 等等。算法核心思想社区发现类算法似乎并不存在一个最好的算法,因为在现实数据中对于社区或者说团伙的定义千差万别,不一定都跟算法的假设匹配。有一些学术文章

2020-09-10 09:02:17 166

转载 知识蒸馏与推荐系统

「写在前面:」 这是一篇介绍 「【知识蒸馏】」 在 「【推荐系统】」领域应用的文章,算是知识蒸馏简述系列文章的延续,希望能对推荐领域的同学有所帮助。以下是本文的主要框架: A brief review KD & 推荐 Conclusion 「1. A brief review」「1-1 知识蒸馏回顾」当我们训练一个深度学习模型时,常常面临模型效果与工程性能冲突的问题。在监督学习中: 训练模型时,通常采用 「复杂模型」 或者 「Ensemble」 方

2020-09-04 17:55:47 187

转载 Multimodal Machine Learning: A Survey and Taxonomy/多模态机器学习综述

1.介绍(introduction)2.历史回顾(review)3.表示(representation)4.映射(Translation/Mapping)5.对齐(Alignment)6.融合(Fusion )7.联合学习(Co-learning)8.结论(conclusion)以下是本人每一章节整理的笔记:1.介绍(introduction)论文总体介绍了多模态的五个方向/挑战:表示(representation)、映射(Translation)、对齐(Alignm

2020-09-03 16:54:37 177

转载 游戏服务器架构演进(完整版)

http://gad.qq.com/article/detail/32876​这是王者荣耀技术分析系列第三篇,有兴趣请持续关注我的blog和公众号。1、像《王者荣耀》一样红过2、从《王者荣耀》来聊聊游戏的帧同步3、游戏服务器的架构演进想了解更多有料的原创文章,请关注我的公众号,大码侯(ID:cool_wier)一、游戏服务器特征游戏服务器,是一个会长期运行程序,并且它还要服务于多个不定时,不定点的网络请求。所以这类服务的特点是要特别关注稳定性和性能。这类程序...

2020-09-02 19:46:24 266

转载 基于知识图谱的问答在美团智能交互场景中的应用和演进

导读:目前为止 IT 产业经历了六次浪潮,分别为:大型机时代,小型机时代,个人电脑时代,桌面互联网时代,移动互联网时代和 AIOT 时代。在这些时代背后可以发现是人机交互方式的变化:从鼠键交互,到触控交互,再到语音智能交互,可以看到人机交互的方式在向更自然更直接化的方式演进。今天会和大家分享基于知识图谱的问答在美团智能交互场景中的应用和演进。今天的介绍会围绕下面三点展开: 智能交互背景介绍 受限场景问答应用和演进 复杂场景问答应用和演进 ——智能交互背景介绍——1...

2020-09-01 14:21:39 532

转载 #####好好好####盘点大数据在游戏行业中的应用

伴随应用商店和社交网络的兴起,游戏市场规模空前扩大,大数据和人工智能对于游戏运营特别是延长产品寿命的积极作用越发明显。但什么样的数据有价值?如何更有效的利用数据的价值?以及人工智能具体可以将游戏行业颠覆到何种程度?都逐渐成为游戏行业共同关注的问题。那么,游戏企业可以利用大数据为自己带来些什么?大数据为游戏行业带来了哪些变革?基于玩家所产生的海量数据,我们怎样去获取玩家的具体画像、他们的特点以及预测他们未来的一些行为以服务我们的运营、发行以及研发过程中的一些系统改造?我们围绕画像展开。举个例子,.

2020-09-01 11:32:46 367

转载 端游、手游服务端常用的架构是什么样的?

作者:韦易笑链接:https://www.zhihu.com/question/29779732/answer/45791817来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。谢邀,手游页游和端游的服务端本质上没区别,区别的是游戏类型。类型1:卡牌、跑酷等弱交互服务端卡牌跑酷类因为交互弱,玩家和玩家之间不需要实时面对面PK,打一下对方的离线数据,计算下排行榜,买卖下道具即可,所以实现往往使用简单的 HTTP服务器:登录时可以使用非对称加密(RSA,.

2020-09-01 10:34:55 159 1

转载 pdfplumber是怎么做表格抽取的(一)

pdfplumber是怎么做表格抽取的(一)冰焰虫子兴趣广泛,包含但不限于:coding,NLP,CV,深度学习笔者把自己这篇原本发布在github page上的文章迁移到了这里,原github page网址:https://iceflameworm.github.io/2019/12/02/pdfplumber-table-extraction-1/pdfplumber是一款完全用python开发的pdf解析库,对于线框完全的表格,pdfminer能给出比较好的抽取效果,但是对于线..

2020-09-01 09:56:23 121

转载 ###好好好####多模态中的BERT

imageBERT自问世以来,几乎刷新了各种NLP的任务榜,基于BERT的变种也层出不穷,在很多任务里都可以看到其身影。大浪淘沙,沉者为金,回想第一次看到BERT的论文时,确实不曾想其也能对工业界产生极大的影响。本文尝试梳理今年BERT在多模态任务(主要涉及视觉和文本模态)上的一些工作,尝试比较各工作的主要思路以及做法上的区别,因此不会过多的涉及细节。总的来看,众多工作的主体模型大同小异,均使用Transformer,从表1(引用自VL-BERT论文)可以对各工作之间的相似和不同之处有个整体的认..

2020-08-28 11:16:35 112 1

转载 ###好好好##BERT新转变:面向视觉基础进行预训练| NeurIPS 2019论文解读

ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks论文作者:Jiasen Lu, Dhruv Batra, Devi Parikh, Stefan Lee(佐治亚理工学院、俄勒冈州立大学、Facebook AI Research)点此进入“论文地址”摘要本文提出ViLBERT(Vision-and-Language BERT),该模型学习.

2020-08-28 11:11:49 31

转载 #####haohaohaohao#######MSRA提出通用文档预训练模型LayoutLM,通往文档智能之路!

星标/置顶小屋,带你解锁最萌最前沿的NLP、搜索与推荐技术随着数字化进程的加快,文档、图像等载体的结构化分析和内容提取成为关乎企业数字化转型成败的关键一环,自动、精准、快速的信息处理对于生产力的提升至关重要。以商业文档为例,不仅包含了公司内外部事务的处理细节和知识沉淀,还有大量行业相关的实体和数字信息。人工提取这些信息既耗时费力且精度低,而且可复用性也不高,因此,文档智能技术(Document Intelligence)应运而生。文档智能技术深层次地结合了人工智能和人类智能,在金融、医疗、保险、

2020-08-25 16:34:41 572

转载 LayoutLM——文本与布局的预训练用于文档图像理解

摘要: 预训练技术近年来在多种NPL任务中取得了广泛的成功。尽管广泛的NPL应用的预训练模型,其大多聚焦于文本级别的操作,而忽略了布局与风格信息,这对文档图像的理解至关重要。该篇论文提出了LayoutLM来联合建模扫描文档图像的文本与布局信息关系,这将有益于真实世界中大量的图像理解任务,如文档图像的信息提取。此外,可以利用图像特征合并文字的视觉信息到LayoutLM中。这是第一次在单独的文档级预训练结构将文字与布局联合学习。其在一些下游任务中达到了新的高水平结果,包括表格理解,收据理解,文档图像分类。代码与

2020-08-25 16:03:39 258

转载 ####haohaohao####微软发布通用文档理解预训练模型LayoutLM

编者按:近年大热的机器人流程自动化(Robotic Process Automation, RPA)利用 AI 技术将人们从繁杂的电子文档处理任务中解放出来,其中最关键就是自动文档分析与识别技术。面对大量无标注电子文档,现有的大规模预训练语言模型能够在预训练阶段有效捕捉文本中蕴含的语义信息,但忽视了文档中的视觉结构信息。微软亚洲研究院近日发布了结合文档结构信息和视觉信息的通用文档预训练模型 LayoutLM,在表单理解、票据理解、文档图像分类等任务的测试中均取得了目前的最佳成绩,模型、代码和论文都已开放下载

2020-08-25 15:40:17 46

转载 ###好好好####深度学习---多标签分类问题

keras multi-label classification 多标签分类 问题:一个数据又多个标签,一个样本数据多个类别中的某几类;比如一个病人的数据有多个疾病,一个文本有多种题材,所以标签就是: [1,0,0,0,1,0,1] 这种高维稀疏类型,如何计算分类准确率?分类问题:二分类多分类多标签Keras metrics (性能度量)介绍的比较好的一个博客:https://machinelearningmastery.com/custom-metrics-de..

2020-08-04 11:55:26 687

转载 #####haohaohao#####BERT实战多标签标注模型(附github源码)

摘要:之前广告行业中那些趣事系列2:BERT实战NLP文本分类任务(附github源码),我们通过BERT构建了二分类器。这里根据实际项目需要使用BERT构建多标签标注模型,可通过一个模型识别多类标签,极大提升建模效率。实际项目中会根据业务需要同时使用二分类器和多标签标注模型完成文本识别任务。通过本篇学习,小伙伴们可以使用BERT模型来解决多标签标注任务。对数据挖掘、数据分析和自然语言处理感兴趣的小伙伴可以多多关注。目录01 多标签标注任务背景介绍02 多...

2020-08-04 09:46:55 289

转载 Keras 多任务实现,Multi Loss

找了好久, 终于找到了:Keras Xception Multi loss 细粒度图像分类这里只摘取关键代码:# create the base pre-trained modelinput_tensor = Input(shape=(299, 299, 3))base_model = Xception(include_top=True, weights='imagenet', input_tensor=None, input_shape=None)plot_model(base_model,

2020-07-22 17:20:18 113

转载 ##haohaohao#######蘑菇街自研服务框架如何提升在线推理效率?

Online Serving 简介从本质而言,在线服务就是提供 (http, rpc) 等接口,用户输入 X, X 经过 pre-process 处理成符合模型输入的参数,经由模型推理后得到 Y,Y 经过 post-process 处理成符合用户认知的数据格式,最后将结果返回。第 2 步和训练中的 evalute/test 相应步骤几乎一样,只是在线推理下的 batch size 往往为 1,远远小于训练过程中的 batch size,故在线推理下的显卡和显存的利用率相对训练更低。1. X =

2020-07-21 16:42:59 103

转载 ##haohaohao###Keras中无损实现复杂(多入参)的损失函数

本文基于比较古旧的KERAS=2.1.5版本,运用了最新tf2.0以及tf.keras特性的更好版本请移步我的另一篇文章:Ziyigogogo:Tensorflow2.0中复杂损失函数实现​zhuanlan.zhihu.com前言Keras中,直接利用API可以快速的实现一些功能简单的自定义损失函数:model.compile(loss=YOUR_CUSTOM_LOSS_FUNCTION)然而任何的简单都是有代价的,通过这个内置方法定义的损失函数有且只能有y_true和y_pred两个

2020-07-21 15:38:44 168

转载 【半监督学习】MixMatch、UDA、ReMixMatch、FixMatch

半监督学习(Semi-Supervised Learning,SSL)的 SOTA 一次次被 Google 刷新,从 MixMatch 开始,到同期的 UDA、ReMixMatch,再到 2020 年的 FixMatch。目录Consistency Regularization Entropy Minimization 结合 Consistency Regularization 和 Entropy Minimization FixMatch: Simplifying SSL with C.

2020-07-10 11:40:18 396

转载 ##好好好好###开源的标注工具

## 开源的标注工具自然语言处理标记工具汇总https://blog.csdn.net/wangyizhen_nju/article/details/94559607spacy原来有两个标注工具,displaCy-ent和displaCy,一个ner一个依赖关系.Annotator for Chinese Text Corpus (UNDER DEVELOPMENT) 中文文本标注工具自然语言处理的大部分任务是监督学习问题。序列标注问题如中文分词、命名实体识别,分类问题如关系识..

2020-07-07 14:49:05 306

转载 ###haohaohao######主动学习用于标注优化迭代

我们使用一些传统的监督学习方法做分类的时候,往往是训练样本规模越大,分类的效果就越好。但是在现实生活的很多场景中,标记样本的获取是比较困难的,这需要领域内的专家来进行人工标注,所花费的时间成本和经济成本都是很大的。而且,如果训练样本的规模过于庞大,训练的时间花费也会比较多。那么有没有办法,能够使用较少的训练样本来获得性能较好的分类器呢?主动学习(Active Learning)为我们提供了这种可能。主动学习通过一定的算法查询最有用的未标记样本,并交由专家进行标记,然后用查询到的样本训练分类模型来提高模型的精

2020-07-07 11:11:05 125

多人物识别

为多人物检测提出了一种研究方法,提出了算法设计等

2013-05-06

基于FPGA的视频图像采集系统的设计与实现

基于FPGA的视频图像采集系统的设计与实现,提出了可行的基于FPGA的采集系统的设计和实现方法。

2013-05-06

知网Hownet情感词典.zip

该资料包含知网情感相关的词典,分为中英文单词表,每种都梳理完毕,并整理成单独文件,非常方便,有需要的话,请下载使用。

2020-05-09

mnist.pkl.gz数据文件

mnist.pkl.gz数据文件直接下载拷贝到keras的dataset下方便许多

2017-01-10

近红外猕猴桃测试分类数据

仅供分类算法测试用数据.数据内容为相隔两天的软的猕猴桃的近红外测试数据,标签为-1 和1,可以作为一个不同时间的猕猴桃的分类数据

2016-10-24

MATLAB2010B 激活文件

MATLAB2010B 激活文件

2016-09-12

ROC曲线 源代码包

非常齐全的各类函数包,想画什么样的ROC曲线,都有相应代码,可以自己学习,也可以二次开发进行定制。

2015-10-13

Harris角点提取算法在H型目标追踪上的研究

在有少量干扰图形的情况下,为实现飞行器对着陆平台上的H型目标识别,中心定位以及跟踪控制,本文提出了在添加图像区域滤波的Harris角点提取算法的基础上,利用角点间组成的线段的比例关系以及线段所在直线间的相互关系来实现目标的自动追踪算法。

2015-07-23

基于tiny210的SD卡MP3播放器系统代码

一个小小的例程,如题所述,可以完美运行,需要的同学下下来学习下~

2015-07-17

机器学习实战源代码

这是机器学习实战,树上的全部例子代码,需要的同学可以下下来看看,帮助学习。

2015-07-17

mishidemudong的留言板

发表于 2020-01-02 最后回复 2020-03-25

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除