Wannafly挑战赛7 E - 珂朵莉与GCD

题目描述 

给你一个长为n的序列a

m次查询 

每次查询一个区间的所有子区间的gcd的和mod1e9+7的结果 

输入描述:

第一行两个数n,m
之后一行n个数表示a
之后m行每行两个数l,r表示查询的区间

输出描述:

对于每个询问,输出一行一个数表示答案
示例1

输入

5 7
30 60 20 20 20
1 1
1 5
2 4
3 4
3 5
2 5
2 3

输出

30
330
160
60
120
240
100

说明

[1,1]的子区间只有[1,1],其gcd为30
[1,5]的子区间有:
[1,1]=30,[1,2]=30,[1,3]=10,[1,4]=10,[1,5]=10
[2,2]=60,[2,3]=20,[2,4]=20,[2,5]=20
[3,3]=20,[3,4]=20,[3,5]=20
[4,4]=20,[4,5]=20
[5,5]=20
总共330
[2,4]的子区间有:
[2,2]=60,[2,3]=20,[2,4]=20
[3,3]=20,[3,4]=20
[4,4]=20
总共160
[3,4]的子区间有:
[3,3]=20,[3,4]=20
[4,4]=20
总共60
[3,5]的子区间有:
[3,3]=20,[3,4]=20,[3,5]=20
[4,4]=20,[4,5]=20
[5,5]=20
总共120
[2,5]的子区间有:
[2,2]=60,[2,3]=20,[2,4]=20,[2,5]=20
[3,3]=20,[3,4]=20,[3,5]=20
[4,4]=20,[4,5]=20
[5,5]=20
总共240
[2,3]的子区间有:
[2,2]=60,[2,3]=20
[3,3]=20
总共100

备注:

对于100%的数据,有1 <= n , m , ai <= 100000

题解

倍增预处理、莫队算法。

类似的题目做过好几个了,有一个比较重要的性质:以$i$为起点的区间,区间$gcd$的值只有$log(n)$种。

这样莫队转移的时候,只要把那$log(n)$种都算一下就$ok$了。

有点卡常,优化了一点才过。

#include <bits/stdc++.h>
using namespace std;

const int maxn = 1e5 + 10;
const long long mod = 1e9 + 7;
int a[maxn];

int pos[maxn];
int n, m, L, R;
long long Ans;

struct X {
  int l, r, id;
}s[maxn];
long long ans[maxn];

struct P {
  int end1;
  int end2;
  long long sum;
  int GCD;
  int nx;
}p[maxn * 40];
int cnt;
int List[maxn][2];

/* st */
int dp[maxn][30];

int gcd(int a, int b) {
  if(b == 0) return a;
  return gcd(b, a % b);
}

void init() {
  for(int i = 1; i <= n; i ++) {
    dp[i][0] = a[i];
  }
  for(int i = 1; (1 << i) <= n; i ++) {
    for(int j = 1; j + (1 << i) - 1 <= n; j ++) {
      dp[j][i] = gcd(dp[j][i - 1], dp[j + (1 << (i - 1))][i - 1]);
    }
  }
}

int query(int l, int r) {
  int k = (int)(log(double(r - l + 1)) / log((double)2));
  return gcd(dp[l][k], dp[r - (1 << k) + 1][k]);
}
/* st */

bool cmp(const X& a, const X& b) {
  if (pos[a.l] != pos[b.l]) return a.l < b.l;
  if((pos[a.l]) & 1) return a.r > b.r;
  return a.r < b.r;
}

void add(int x, int op) {
  int it;
  for(it = List[x][op]; it != -1; it = p[it].nx) {
    int id = it;
    if(p[id].end2 < L || p[id].end1 > R) continue;
    if(p[id].end1 >= L && p[id].end2 <= R) {
      Ans = Ans + p[id].sum;
    } else {
      int ll = max(p[id].end1, L);
      int rr = min(p[id].end2, R);
      Ans = Ans + 1LL * (rr - ll + 1) * p[id].GCD;
    }
  }
}

void del(int x, int op) {
  int it;
  for(it = List[x][op]; it != -1; it = p[it].nx) {
    int id = it;
    if(p[id].end2 < L || p[id].end1 > R) continue;
    if(p[id].end1 >= L && p[id].end2 <= R) {
      Ans = Ans - p[id].sum;
    } else {
      int ll = max(p[id].end1, L);
      int rr = min(p[id].end2, R);
      Ans = Ans - 1LL * (rr - ll + 1) * p[id].GCD;
    }
  }
}

int main() {
  scanf("%d%d", &n, &m);
  int sz = sqrt(n);
  for(int i = 1; i <= n; i ++) {
    scanf("%d", &a[i]);
    pos[i] = i / sz;
    List[i][0] = List[i][1] = -1;
  }
  init();
  
  for(int i = 1; i <= n; i ++) {
    int ll  = i, rr = i;
    while(ll <= n) {
      int left = ll, right = n;
      int g = query(i, ll);
      while(left <= right) {
        int mid = (left + right) / 2;
        if(g == query(i, mid)) {
          rr = mid, left = mid + 1;
        } else {
          right = mid - 1;
        }
      }
      p[cnt].end1 = ll;
      p[cnt].end2 = rr;
      p[cnt].sum = 1LL * g * (rr - ll + 1);
      p[cnt].GCD = g;
      p[cnt].nx = List[i][0];
      List[i][0] = cnt;
      ll = rr + 1;
      cnt ++;
    }
  }
  
  for(int i = 1; i <= n; i ++) {
    int ll  = i, rr = i;
    while(rr >= 1) {
      int left = 1, right = rr;
      int g = query(rr, i);
      while(left <= right) {
        int mid = (left + right) / 2;
        if(g == query(mid, i)) {
          ll = mid, right = mid - 1;
        } else {
          left = mid + 1;
        }
      }
      p[cnt].end1 = ll;
      p[cnt].end2 = rr;
      p[cnt].sum = 1LL * g * (rr - ll + 1);
      p[cnt].GCD = g;
      p[cnt].nx = List[i][1];
      List[i][1] = cnt;
      rr = ll - 1;
      cnt ++;
    }
  }
  
  for(int i = 1; i <= m; i ++) {
    scanf("%d%d", &s[i].l, &s[i].r);
    s[i].id = i;
  }
  sort(s + 1, s + m + 1, cmp);
  L = s[1].l;
  R = s[1].l - 1;
  Ans = 0;
  for(int i = s[1].l; i <= s[1].r; i ++) {
    R ++;
    add(i, 1);
  }
  ans[s[1].id] = Ans;
  for(int i = 2; i <= m; i ++) {
    while (L > s[i].l) { L --, add(L, 0); }
    while (R < s[i].r) { R ++, add(R, 1); }
    while (L < s[i].l) { del(L, 0), L ++; }
    while (R > s[i].r) { del(R, 1), R --; }
    ans[s[i].id] = Ans;
  }
  
  for(int i = 1; i <= m; i ++) {
    printf("%lld\n", ans[i] % mod);
  }
  return 0;
}

 

转载于:https://www.cnblogs.com/zufezzt/p/8214090.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值