Wannafly挑战赛7 E.珂朵莉与GCD (树状数组

题目链接

 

首先看到数据,肯定离线了。其次区间问题很有可能分块,莫队啥的。

对其r排序过后,发现每添加一个数进入gcd数组里,对其后面的答案都有作用,

那么莫队也省了,直接前缀和维护就可以了,用树状数组减少复杂度到log级别

 

///                 .-~~~~~~~~~-._       _.-~~~~~~~~~-.
///             __.'              ~.   .~              `.__
///           .'//                  \./                  \\`.
///        .'//                     |                     \\`.
///       .'// .-~"""""""~~~~-._     |     _,-~~~~"""""""~-. \\`.
///     .'//.-"                 `-.  |  .-'                 "-.\\`.
///   .'//______.============-..   \ | /   ..-============.______\\`.
/// .'______________________________\|/______________________________`.
//#pragma GCC optimize("Ofast")
//#pragma comment(linker, "/STACK:102400000,102400000")
//#pragma GCC target(sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx) 
#include <vector>
#include <iostream>
#include <string>
#include <map>
#include <stack>
#include <cstring>
#include <queue>
#include <list>
#include <stdio.h>
#include <set>
#include <algorithm>
#include <cstdlib>
#include <cmath>
#include <iomanip>
#include <cctype>
#include <sstream>
#include <fstream>
#include <functional>
#include <stdlib.h>
#include <time.h>
#include <bitset>
using namespace std;

#define pi acos(-1)
#define s_1(x) scanf("%d",&x)
#define s_2(x,y) scanf("%d%d",&x,&y)
#define s_3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define s_4(x,y,z,X) scanf("%d%d%d%d",&x,&y,&z,&X)
#define S_1(x) scan_d(x)
#define S_2(x,y) scan_d(x),scan_d(y)
#define S_3(x,y,z) scan_d(x),scan_d(y),scan_d(z)
#define PI acos(-1)
#define endl '\n'
#define srand() srand(time(0));
#define me(x,y) memset(x,y,sizeof(x));
#define foreach(it,a) for(__typeof((a).begin()) it=(a).begin();it!=(a).end();it++)
#define close() ios::sync_with_stdio(0); cin.tie(0);
#define FOR(x,n,i) for(int i=x;i<=n;i++)
#define FOr(x,n,i) for(int i=x;i<n;i++)
#define fOR(n,x,i) for(int i=n;i>=x;i--)
#define fOr(n,x,i) for(int i=n;i>x;i--)
#define W while
#define sgn(x) ((x) < 0 ? -1 : (x) > 0)
#define bug printf("***********\n");
#define db double
#define ll long long
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define pf printf
typedef long long LL;
typedef pair <int, int> ii;
const int INF=0x3f3f3f3f;
const LL LINF=0x3f3f3f3f3f3f3f3fLL;
const int dx[]={-1,0,1,0,1,-1,-1,1};
const int dy[]={0,1,0,-1,-1,1,-1,1};
const int maxn=1e5+100;
const int maxx=1e7+10;
const double EPS=1e-8;
const double eps=1e-8;
const LL mod=1e9+7;
template<class T>inline T min(T a,T b,T c) { return min(min(a,b),c);}
template<class T>inline T max(T a,T b,T c) { return max(max(a,b),c);}
template<class T>inline T min(T a,T b,T c,T d) { return min(min(a,b),min(c,d));}
template<class T>inline T max(T a,T b,T c,T d) { return max(max(a,b),max(c,d));}
template <class T>
inline bool scan_d(T &ret){char c;int sgn;if (c = getchar(), c == EOF){return 0;}
while (c != '-' && (c < '0' || c > '9')){c = getchar();}sgn = (c == '-') ? -1 : 1;ret = (c == '-') ? 0 : (c - '0');
while (c = getchar(), c >= '0' && c <= '9'){ret = ret * 10 + (c - '0');}ret *= sgn;return 1;}

inline bool scan_lf(double &num){char in;double Dec=0.1;bool IsN=false,IsD=false;in=getchar();if(in==EOF) return false;
while(in!='-'&&in!='.'&&(in<'0'||in>'9'))in=getchar();if(in=='-'){IsN=true;num=0;}else if(in=='.'){IsD=true;num=0;}
else num=in-'0';if(!IsD){while(in=getchar(),in>='0'&&in<='9'){num*=10;num+=in-'0';}}
if(in!='.'){if(IsN) num=-num;return true;}else{while(in=getchar(),in>='0'&&in<='9'){num+=Dec*(in-'0');Dec*=0.1;}}
if(IsN) num=-num;return true;}

void Out(LL a){if(a < 0) { putchar('-'); a = -a; }if(a >= 10) Out(a / 10);putchar(a % 10 + '0');}
void print(LL a){ Out(a),puts("");}
//freopen( "in.txt" , "r" , stdin );
//freopen( "data.txt" , "w" , stdout );
//cerr << "run time is " << clock() << endl;

struct node {
	int l,r,id;
}q[maxn];
LL d[maxn][2];
LL a[maxn];
int n,m;
LL ans[maxn];
LL gc[maxn];
int pos[maxn];
bool cmp(node a,node b) {
	return a.r<b.r;
}
int lowbit(int x) {
	return x&(-x);
}
void update(int x,LL val) {
	int tmp=x;
	W(x<=n) {
		d[x][0]+=val;
		d[x][1]+=tmp*val;
		x+=lowbit(x);
	}
}
int sum(int x) {
	LL ans=0;
	int tmp=x;
	W(x) {
		ans+=d[x][0]*(LL)(tmp+1)-d[x][1];
		ans%=mod;
		x-=lowbit(x);
	}
	return ans;
}
void solve() {
	s_2(n,m);
	FOR(1,n,i) S_1(a[i]);
	FOR(1,m,i) s_2(q[i].l,q[i].r),q[i].id=i;
	sort(q+1,q+m+1,cmp);
	int p=1;
	int tot=0;
	FOR(1,m,i) {
		W(p<=q[i].r) {
			FOR(1,tot,j) 
				gc[j]=__gcd(gc[j],a[p]);
			gc[++tot]=a[p];
			pos[tot]=p;
			int tmp=0;
			FOR(1,tot,j) {
				if(gc[j]!=gc[j-1]) {
					gc[++tmp]=gc[j];
					pos[tmp]=pos[j];
				}
			}
			tot=tmp;
			FOr(1,tot,j) {
				update(pos[j],gc[j]);
				update(pos[j+1],-gc[j]);
			}
			update(pos[tot],gc[tot]);
			update(p+1,-gc[tot]);
			p++;
		}
		ans[q[i].id]=(sum(q[i].r)-sum(q[i].l-1)+mod)%mod;
	}
	FOR(1,m,i)
		print(ans[i]);
}
int main() {
	//freopen( "1.in" , "r" , stdin );
    //freopen( "1.out" , "w" , stdout );
    int t=1;
    //init();
    //s_1(t);
    for(int cas=1;cas<=t;cas++) {
        //printf("Case #%d: ",cas);
        solve();
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值