有朋友去浦发面试,因为我们是相同岗位,为了查漏补缺,便问了一下他们的机试题目。
机试考3道编程,前两道很水,最后一道他说有点麻烦,没有AC。我自己也尝试着码了一下,然后发现还是得需要耐心。
在此,我列出了三种方法,以供大家参考。
其中包括标号从0 开始的(0....(N-1)),和标号从1开始的(1....N))两个版本。
先简单说一下我的思路,前两种方法就是模拟整个过程:
1. 标号从1开始:
用动态数组存储数据,一个大循环就是数组不为空;然后利用 target = (target + k)%list.size(); 求出数组下标,对list.size()取模是为了不让target越界;那么得到的target的范围就是【0,list.size()】,然后就打印 list.get(target-1) ,所以,为了不越界,需要判断 target!=0 ,然后,再将该元素移除 list.remove(target-1); ,最后再将下标自减1(关于为什么将下标再减一,下面第2种方法中有解释)。如果 target==0的话,那么就打印数组中最后一位 list.get(list.size()-1) ,然后再移除该元素即可。
代码如下:
private static void lastPeople(int total, intk) {//初始化人数,人数排号从1开始;
List list = new ArrayList();for (int i = 1; i <= total; i++) {
list.add(i);
}//从第target(数组下标)个开始重新数数;
int target = 0;while (!list.isEmpty()) {
target= (target + k)%list.size();//当target=0时,target-1就是-1了,数组越界,其意思就是返回倒数第一个元素,即list.size()-1;
if (target != 0) {
System.out.print(list.get(target-1)+" ");
list.remove(target-1);
target--;
}else{
System.out.print(list.get(list.size()-1)+" ");
list.remove(list.size()-1);
}
}
}
2. 标号从0开始:
同样的,用动态数组存储数据,一个大循环就是数组不为空;用 i 记录已走过的整个数组下标的最后一位(关于这句话,大家可能不太理解,意思就是比如数组[1,2,3,4,5,6],当遍历到元素4时,下标为3,然后把4移除,下标自减,让其改为2,指向元素3,而不是指向还未遍历到的元素5);以count计数,到第k个就删去该元素,并且置count=0,i-- 使得下标回退一步。
代码如下:
private static void lastPeople1(int total, intk) {//初始化人数
List list = new ArrayList();for (int i = 0; i < total; i++) {
list.add(i);
}int i = -1;//记录整个序号下标
int count = 0;//记录第几个,是否到达第k个;
while (list.size() != 0) {++i;if (i ==list.size()) {
i= 0;
}++count;if (count ==k) {
System.out.print(list.get(i)+" ");
list.remove(i);
count=0;--i;
}
}
}
3. 第三种方法是我从网上找来的,但是该方法不能打印整个过程,只能选择出最后一位被枪毙的人是谁。是用数学规律解的,本人表示服气。
推出的递归公式是: F(i)=F(i-1)+ k ,为了防止数组越界,需要取模 F(i)=(F(i-1)+ k)%i 。
代码如下:
private static void lastPeople2(int n, intk) {int res = 0;for (int i = 2; i <= n; i++) {
res= (res + k)%i;
}
System.out.print((res+1)+" ");
}
三种方法输出结果如下:
以上我都是用动态数组arraylist来存储数据的,我在网上查到还有用队列解决的,方法也很好,在这里我就不多说了,详见参考4.
又来更了。。。
最近又看了一篇专门写约瑟夫环的一个公众号文章:
里面的解法相当给力:
方法4. 递归:
递归是思路是:每次我们删除了某一个士兵之后,我们就对这些士兵重新编号,然后我们的难点就是找出删除前和删除后士兵编号的映射关系。
我们定义递归函数 f(n,m) 的返回结果是存活士兵的编号,显然当 n = 1 时,f(n, m) = 1。假如我们能够找出 f(n,m) 和 f(n-1,m) 之间的关系的话,我们就可以用递归的方式来解决了。
我们假设人员数为 n, 报数到 m 的人就自杀。则刚开始的编号为:(从1开始编号)
1
…
m - 2
m - 1
m
m + 1
m + 2
…
n
进行了一次删除之后,删除了编号为 m 的节点。删除之后,就只剩下 n - 1 个节点了,删除前和删除之后的编号转换关系为:
删除前 --- 删除后
… --- …
m - 2 --- n - 2
m - 1 --- n - 1
m --- 无(因为编号被删除了)
m + 1 --- 1(因为下次就从这里报数了)
m + 2 ---- 2
… ---- …
新的环中只有n - 1 个节点。且删除前编号为 m + 1, m + 2, m + 3 的节点成了删除后编号为 1, 2, 3 的节点。
假设 old 为删除之前的节点编号, new 为删除了一个节点之后的编号,则 old 与 new 之间的关系为 old = (new + m - 1) % n + 1。 为什么加1后面解释。
这样,我们就得出 f(n, m) 与 f(n - 1, m)之间的关系了,而 f(1, m) = 1。所以我们可以采用递归的方式来做。代码如下:
int f(int n, intm){if(n == 1) returnn;return (f(n - 1, m) + m - 1) % n + 1;
}
//或者
int f(int n, intm){
return n == 1 ? n : (f(n - 1, m) + m - 1) % n + 1;
}
时间复杂度是 O(n),空间复杂度是O(1)。
注:有些人可能会疑惑为什么不是 old = (new + m ) % n 呢?
主要是因为编号是从 1 开始的,而不是从 0 开始的。如果 new + m == n的话,会导致最后的计算结果为 old = 0。所以 old = (new + m - 1) % n + 1.
Over...
参考: