Ibelievesunshine的博客

热爱生活,寻找新鲜感

python opencv 利用分水岭算法实现对物体的分割 图文详细注释版 以分割官网提供的硬币为例

分水岭算法可以实现自动分割多个物体,opencv中 cv.watershed() 函数实现了分水岭算法 话不多说,上代码 # 利用分水岭算法分离多个相同硬币 import numpy as np import cv2 as cv from matplotlib import pyplot...

2019-07-19 11:41:30

阅读数 5

评论数 0

opencv python 实现灰度图像和彩色图像直方图全局均衡化和自适应均衡化

首先进行简单的灰度图像的全局均衡化和自适应均衡化 import cv2 as cv import numpy as np img = cv.imread('cun.jpg',0) # 全局直方图均衡化 img1 = cv.equalizeHist(img) # 自适应直方图均衡化 clah...

2019-07-09 18:47:00

阅读数 10

评论数 0

Deconv (Transpose Convolution) 和 Unpooling 的通俗解释

Deconv和Unpooling作为标准操作却很少被人提及 在深度学习分类检测等任务中,大部分操作都是在下采样(downsampling),因为我们输入高维的图像,然后输出是低维的坐标信息或者是分类信息,所以我们需要下采样来减少维度,但是在一些特殊的任务中,比如生成或者是语义分割的时候,我们...

2019-07-04 15:58:10

阅读数 27

评论数 0

解决 adobe reader 只能翻页,不能滚动的问题

点击左上角的 视图——> 页面显示——>启用滚动

2019-07-03 10:55:13

阅读数 38

评论数 0

解决word中无法正常生成下划线的问题

今天遇到一个问题,在word中打下划线的时候,无法打出来。 在网上查到了解决方案,在此分享给大家 文件——选项——高级——为尾部空格添加下划线(U)——确定 ...

2019-06-11 15:53:14

阅读数 74

评论数 0

opencv中很有趣的仿射变换(Affine Transformation)

在仿射变换中,原图中所有平行的行在变换后的图像中仍然平行。为了构建仿射矩阵,我们需要原图中的三个点和它们在变换后的图像中的对应位置。函数 cv.getAffineTransform 创建一个2*3的矩阵传递进 cv.warpAffine import numpy as np import c...

2019-05-28 15:46:27

阅读数 17

评论数 0

官网opencv练习题 最简单的多物体分离技术

题目来源:https://docs.opencv.org/4.1.0/df/d9d/tutorial_py_colorspaces.html 最底部 题目: Try to find a way to extract more than one colored objects, for eg,...

2019-05-28 10:36:40

阅读数 30

评论数 0

详解opencv掩膜mask

文章转载自:https://www.cnblogs.com/skyfsm/p/6894685.html 在OpenCV中我们经常会遇到一个名字:Mask(掩膜)。很多函数都使用到它,那么这个Mask到底什么呢? 一开始我接触到Mask这个东西时,我还真是一头雾水啊,也对无法理解Mask到底有什...

2019-05-28 09:21:48

阅读数 24

评论数 0

opencv学习第6课官方练习实现 Create a Paint application with adjustable colors and brush radius using trackbars

练习题目来源(网址最下方):https://docs.opencv.org/4.1.0/d9/dc8/tutorial_py_trackbar.html import numpy as np import cv2 as cv brush_color = [80,80,80] brush_...

2019-04-17 15:21:15

阅读数 31

评论数 0

opencv 学习第5课 滑动条实现调色板

# Trackbar as the Color Palette import numpy as np import cv2 as cv # When trackbar changed,the bind function does nothing def nothing(x): pass ...

2019-04-17 11:50:50

阅读数 36

评论数 0

opencv 学习第4课 将鼠标作为笔刷使用

注意,要使用笔刷的话,需首先按下 m 键将默认模式转变 import numpy as np import cv2 as cv drawing = False # true if mouse is pressed mode = True # if True,draw rectangle....

2019-04-17 11:07:24

阅读数 54

评论数 0

opencv 学习第三课 画线段 圆 椭圆 矩形 多边形 插入文字 代码注释版 保证你每一行都能读懂

import numpy as np import cv2 as cv # 创建一张大小为512×512,通道数为3的黑色的图片 img = np.zeros((512,512,3), np.uint8) # 在图片上从(0,0)到(511,511)画一条颜色为(255,0,0),线宽为5的线段 ...

2019-04-12 21:19:29

阅读数 67

评论数 0

基于字典的超分辨率实现的各种方法

文章来源:https://www.cnblogs.com/wxl845235800/p/7738953.html 简介   这段时间在看基于字典的单帧图像超分辨率重建,本篇主要是对这块做个笔记记录。 基本原理 预处理 1、准备好用于字典训练的低分辨率图像LR及与之对应...

2019-04-10 21:49:10

阅读数 70

评论数 0

图像 super-resolution restruction 的各种主流实现方式

文章源地址:https://github.com/huangzehao/Super-Resolution.Benckmark 但是从这里最后的​Quantitative comparisons可以看出,如果单从传统学习的角度,对于PSNR的提升,可能已经很难超越DL。当然有一些基于重建的方法可能...

2019-04-10 21:31:38

阅读数 154

评论数 0

Adboost、GBDT、Xgboost 详解

转载请注明出处:http://www.cnblogs.com/willnote/p/6801496.html 前言 本文为学习boosting时整理的笔记,全文主要包括以下几个部分: 对集成学习进行了简要的说明 给出了一个Adboost的具体实例 对Adboost的原理与学习过程进行了推...

2019-04-07 11:22:08

阅读数 128

评论数 0

图像处理与计算机视觉经典文章

*************************************************************************************************************** 在这里,我特别声明:本文章的源作者是 杨晓冬 (个人邮箱:xdy...

2019-04-06 19:25:05

阅读数 159

评论数 0

opencv 学习第二课 摄像头、外部视频读取、处理、显示、写入 代码注释版 保证你每一行都能读懂

1. 使用摄像头捕捉图像,将其转换为灰度帧后,输出视频图像 import numpy as np import cv2 as cv cap = cv.VideoCapture(0) while(True): # 一帧一帧的捕捉 ret,frame = cap.read() # 将...

2019-04-06 17:22:24

阅读数 51

评论数 0

opencv 学习第一课 图像读取、显示、写入 代码注释版 保证你每一行都能读懂

import numpy as np import cv2 as cv img = cv.imread('cat.jpg',0) #读入图片 cv.imshow('image1',img) #显示图片 k=cv.waitKey(0) & 0xFF ...

2019-04-06 15:48:47

阅读数 95

评论数 0

深度学习中常用优化器算法Optimizer详解(BGD、SGD、MBGD、Momentum、NAG、Adagrad、Adadelta、RMSprop、Adam)

本文转载自:https://www.cnblogs.com/guoyaohua/p/8542554.html 在机器学习、深度学习中使用的优化算法除了常见的梯度下降,还有 Adadelta,Adagrad,RMSProp 等几种优化器,都是什么呢,又该怎么选择呢? 在 Sebastian Ru...

2019-04-05 21:51:22

阅读数 36

评论数 0

利用matlab写一个简单的拉普拉斯变换提取图像边缘

可以证明,最简单的各向同性微分算子是拉普拉斯算子。一个二维图像函数 f(x,y) 的拉普拉斯算子定义为 其中,在 x 方向可近似为 同理,在 y 方向上可近似为 于是 我们得到满足以上三个公式的两个变量的离散拉普拉斯算子是 拉普拉斯变换所对应的滤波器模板为: 0 1...

2019-03-25 18:59:46

阅读数 312

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭