多重背包问题
一个背包,承量有限为W,有n种物体,第i种物体,价值Vi,占用重量为 Wi,且有Ci件,选择物品若干放入背包,使得总重量不超过背包的承重。总价值最大?
输入
第1行,2个整数,N和W中间用空格隔开。N为物品的种类,W为背包的容量。(1 <= N <= 100,1 <= W <= 50000) 第2 - N + 1行,每行3个整数,Wi,Pi和Ci分别是物品体积、价值和数量。(1 <= Wi, Pi <= 10000, 1 <= Ci <= 200)
输出
输出可以容纳的最大价值。
输入示例
3 6 2 2 5 3 3 8 1 4 1
输出示例
9
请选取你熟悉的语言,并在下面的代码框中完成你的程序,注意数据范围,最终结果会造成Int32溢出,这样会输出错误的答案。
不同语言如何处理输入输出,请查看下面的语言说明。
【分析】我们把第i种物品看成单个的,一个一个的,我们想想二进制,任何一个数都可以由二的幂表示。
我们试试看,比如Ci = 14,我们可以把它化成如下4个物品:
重量是Wi,体积是Vi
重量是2 * Wi , 体积是2 * Vi
重量是4 * Wi , 体积是4 * Vi
重量是7 * Wi , 体积是7 * Vi
注意最后我们最后我们不能取,重量是8 * Wi , 体积是8 * Vi 因为那样总的个数是1 + 2 + 4 + 8 = 15个了,我们不能多取对吧?
我们用这4个物品代替原来的14个物品,大家可以试试原来物品无论取多少个,重量和体积都可以靠我们这几个物品凑出来,这说明我们这种分配方式和原来是等价的。
我们转化为一般方法,对于Ci ,我们的拆分方法是:
1,2,4,8…… 同时Ci减去这些值,如果Ci不够减了,则把最后剩余的算上,同时我们体积也对应乘以这些系数。这样Ci个同一种物品,被我们变成了logCi个物品了。于是按照0-1背包的做法,时间复杂变为O(W * sigma(logCi))了,降了很多。
View Code
我们试试看,比如Ci = 14,我们可以把它化成如下4个物品:
重量是Wi,体积是Vi
重量是2 * Wi , 体积是2 * Vi
重量是4 * Wi , 体积是4 * Vi
重量是7 * Wi , 体积是7 * Vi
注意最后我们最后我们不能取,重量是8 * Wi , 体积是8 * Vi 因为那样总的个数是1 + 2 + 4 + 8 = 15个了,我们不能多取对吧?
我们用这4个物品代替原来的14个物品,大家可以试试原来物品无论取多少个,重量和体积都可以靠我们这几个物品凑出来,这说明我们这种分配方式和原来是等价的。
我们转化为一般方法,对于Ci ,我们的拆分方法是:
1,2,4,8…… 同时Ci减去这些值,如果Ci不够减了,则把最后剩余的算上,同时我们体积也对应乘以这些系数。这样Ci个同一种物品,被我们变成了logCi个物品了。于是按照0-1背包的做法,时间复杂变为O(W * sigma(logCi))了,降了很多。
(关于此题还有复杂度更低的方法,留作大家思考)
#include <iostream> #include <cstdio> #include <cstdlib> #include <cmath> #include <algorithm> #include <climits> #include <cstring> #include <string> #include <set> #include <map> #include <queue> #include <stack> #include <vector> #include <list> #define inf 0x3f3f3f3f typedef long long ll; using namespace std ; ll n,m,a[50005],dp[50005]; ll b[505],w[20005],v[20005]; int main() { int W,V,C,cnt=0; cin>>n>>m; for(int i=1;i<=n;i++) { cin>>W>>V>>C; for(int j=1;;j*=2) { if(C>=j){w[cnt]=j*W;v[cnt]=j*V;C-=j;cnt++;} else {w[cnt]=C*W;v[cnt]=C*V;cnt++;break;} } } for(int i=0;i<cnt;i++) { for(int j=m;j>=w[i];j--) { dp[j]=max(dp[j],dp[j-w[i]]+v[i]); } } cout<<dp[m]<<endl; return 0 ; }