【書本上的算法往往講得非常復雜,我和我的朋友計划用一些簡單通俗的例子來描述算法的流程】
匈牙利算法是由匈牙利數學家Edmonds於1965年提出,因而得名。匈牙利算法是基於Hall定理中充分性證明的思想,它是部圖匹配最常見的算法,該算法的核心就是尋找增廣路徑,它是一種用增廣路徑求二分圖最大匹配的算法。
-------等等,看得頭大?那么請看下面的版本:
通過數代人的努力,你終於趕上了剩男剩女的大潮,假設你是一位光榮的新世紀媒人,在你的手上有N個剩男,M個剩女,每個人都可能對多名異性有好感(
-_-||暫時不考慮特殊的性取向),如果一對男女互有好感,那么你就可以把這一對撮合在一起,現在讓我們無視掉所有的單相思(好憂傷的感覺
),你擁有的大概就是下面這樣一張關系圖,每一條連線都表示互有好感。
本着救人一命,勝造七級浮屠的原則,你想要盡可能地撮合更多的情侶,匈牙利算法的工作模式會教你這樣做:
===============================================================================
一: 先試着給1號男生找妹子,發現第一個和他相連的1號女生還名花無主,got it,連上一條藍線
===============================================================================
二:接着給2號男生找妹子,發現第一個和他相連的2號女生名花無主,got it
===============================================================================
三:接下來是3號男生,很遺憾1號女生已經有主了,怎么辦呢?
我們試着給之前1號女生匹配的男生(也就是1號男生)另外分配一個妹子。
(黃色表示這條邊被臨時拆掉)
與1號男生相連的第二個女生是2號女生,但是2號女生也有主了,怎么辦呢?我們再試着給2號女生的原配(
)重新找個妹子(注意這個步驟和上面是一樣的,這是一個遞歸的過程)
此時發現2號男生還能找到3號女生,那么之前的問題迎刃而解了,回溯回去
2號男生可以找3號妹子~~~ 1號男生可以找2號妹子了~~~ 3號男生可以找1號妹子
所以第三步最后的結果就是:
===============================================================================
四: 接下來是4號男生,很遺憾,按照第三步的節奏我們沒法給4號男生騰出來一個妹子,我們實在是無能為力了……香吉士同學走好。
===============================================================================
這就是匈牙利算法的流程,其中找妹子是個遞歸的過程,最最關鍵的字就是“騰”字
其原則大概是:有機會上,沒機會創造機會也要上
【code】
boolfind(intx){
inti,j;
for(j=1;j<=m;j++){//掃描每個妹子
if(line[x][j]==true&& used[j]==false)
//如果有曖昧並且還沒有標記過(這里標記的意思是這次查找曾試圖改變過該妹子的歸屬問題,但是沒有成功,所以就不用瞎費工夫了)
{
used[j]=1;
if(girl[j]==0 || find(girl[j])) {
//名花無主或者能騰出個位置來,這里使用遞歸
girl[j]=x;
returntrue;
}
}
}
returnfalse;
}
在主程序我們這樣做:每一步相當於我們上面描述的一二三四中的一步
for(i=1;i<=n;i++)
{
memset(used,0,sizeof(used));//這個在每一步中清空
iffind(i) all+=1;
}給出Java版本實現
import java.util.Arrays;
public class Edmonds {
static int A[][] = { { 0, 1 }, { 1, 2 }, { 0, 1 }, { 2 } };
static int p[] = { -1, -1, -1, -1 };
public static void main(String[] args) {
for (int i = 0; i < A.length; i++) {
boolean find = false;
for (int j : A[i]) {
if (p[j] == -1) {
find = true;
p[j] = i;
break;
}
}
if (!find) {
for (int j : A[i]) {
if (reset(p[j], j, new int[0])) {
p[j] = i;
break;
}
}
}
}
System.out.println(Arrays.toString(p));
}
/**
* 第i人將第m位置空 增加最多移動次數限制
*
* @param i
* @param p
* @return
*/
static boolean reset(int i, int m, int[] pass) {
for (int n : A[i]) {
if (n != m && p[n] == -1) {
p[n] = i;
p[m] = -1;
return true;
}
}
for (int n : A[i]) {
if (n != m && p[n] != -1) {
for (int pa : pass)
if (p[n] == pa)
return false;
System.out.println(" (i,m):" + i + "," + m + " n:" + n + " p[n]:" + p[n]);
int newpass[] = new int[pass.length + 1];
System.arraycopy(pass, 0, newpass, 0, pass.length);
newpass[pass.length] = p[n];
if (reset(p[n], n, newpass)) {
p[n] = i;
p[m] = -1;
return true;
}
}
}
return false;
}
}