匈牙利法的java代码,趣寫算法系列之--匈牙利算法 Java實現

【書本上的算法往往講得非常復雜,我和我的朋友計划用一些簡單通俗的例子來描述算法的流程】

匈牙利算法是由匈牙利數學家Edmonds於1965年提出,因而得名。匈牙利算法是基於Hall定理中充分性證明的思想,它是部圖匹配最常見的算法,該算法的核心就是尋找增廣路徑,它是一種用增廣路徑求二分圖最大匹配的算法。

-------等等,看得頭大?那么請看下面的版本:

通過數代人的努力,你終於趕上了剩男剩女的大潮,假設你是一位光榮的新世紀媒人,在你的手上有N個剩男,M個剩女,每個人都可能對多名異性有好感(

a528095b31d32ddd86840b8eca21aecc.jpe-_-||暫時不考慮特殊的性取向),如果一對男女互有好感,那么你就可以把這一對撮合在一起,現在讓我們無視掉所有的單相思(好憂傷的感覺

a8554594126024bad545bf70089c82d0.jpe),你擁有的大概就是下面這樣一張關系圖,每一條連線都表示互有好感。

3ce20bb2ca609e1dfa08556b2e2e7e28.jpe

本着救人一命,勝造七級浮屠的原則,你想要盡可能地撮合更多的情侶,匈牙利算法的工作模式會教你這樣做:

===============================================================================

一: 先試着給1號男生找妹子,發現第一個和他相連的1號女生還名花無主,got it,連上一條藍線

fcd160c4a7992cdf9ef26f282bf22dd3.jpe

===============================================================================

二:接着給2號男生找妹子,發現第一個和他相連的2號女生名花無主,got it

abe368e6aa54875e11bc0b0701b0f375.jpe

===============================================================================

三:接下來是3號男生,很遺憾1號女生已經有主了,怎么辦呢?

我們試着給之前1號女生匹配的男生(也就是1號男生)另外分配一個妹子。

(黃色表示這條邊被臨時拆掉)

60013ecfaa74fb66e1b0a01c6a458bc5.jpe

與1號男生相連的第二個女生是2號女生,但是2號女生也有主了,怎么辦呢?我們再試着給2號女生的原配(

0dcaf58743a135008e8e5ac662888574.jpe

0dcaf58743a135008e8e5ac662888574.jpe)重新找個妹子(注意這個步驟和上面是一樣的,這是一個遞歸的過程)

8b3951dd3364d3dedaa4bf5685ccbdd1.jpe

此時發現2號男生還能找到3號女生,那么之前的問題迎刃而解了,回溯回去

2號男生可以找3號妹子~~~                 1號男生可以找2號妹子了~~~                3號男生可以找1號妹子

44c8c006c42344601bd1eb5c0ad0a1e2.jpe

3a35b26266d215a68c596a587bc582d1.jpe

9b9a4f65f29a93a89cf71b03e621a163.jpe

所以第三步最后的結果就是:

3807379be60eef947f03b439b55bea3f.jpe

===============================================================================

四: 接下來是4號男生,很遺憾,按照第三步的節奏我們沒法給4號男生騰出來一個妹子,我們實在是無能為力了……香吉士同學走好。

===============================================================================

這就是匈牙利算法的流程,其中找妹子是個遞歸的過程,最最關鍵的字就是“騰”字

其原則大概是:有機會上,沒機會創造機會也要上

【code】

boolfind(intx){

inti,j;

for(j=1;j<=m;j++){//掃描每個妹子

if(line[x][j]==true&& used[j]==false)

//如果有曖昧並且還沒有標記過(這里標記的意思是這次查找曾試圖改變過該妹子的歸屬問題,但是沒有成功,所以就不用瞎費工夫了)

{

used[j]=1;

if(girl[j]==0 || find(girl[j])) {

//名花無主或者能騰出個位置來,這里使用遞歸

girl[j]=x;

returntrue;

}

}

}

returnfalse;

}

在主程序我們這樣做:每一步相當於我們上面描述的一二三四中的一步

for(i=1;i<=n;i++)

{

memset(used,0,sizeof(used));//這個在每一步中清空

iffind(i) all+=1;

}給出Java版本實現

import java.util.Arrays;

public class Edmonds {

static int A[][] = { { 0, 1 }, { 1, 2 }, { 0, 1 }, { 2 } };

static int p[] = { -1, -1, -1, -1 };

public static void main(String[] args) {

for (int i = 0; i < A.length; i++) {

boolean find = false;

for (int j : A[i]) {

if (p[j] == -1) {

find = true;

p[j] = i;

break;

}

}

if (!find) {

for (int j : A[i]) {

if (reset(p[j], j, new int[0])) {

p[j] = i;

break;

}

}

}

}

System.out.println(Arrays.toString(p));

}

/**

* 第i人將第m位置空 增加最多移動次數限制

*

* @param i

* @param p

* @return

*/

static boolean reset(int i, int m, int[] pass) {

for (int n : A[i]) {

if (n != m && p[n] == -1) {

p[n] = i;

p[m] = -1;

return true;

}

}

for (int n : A[i]) {

if (n != m && p[n] != -1) {

for (int pa : pass)

if (p[n] == pa)

return false;

System.out.println(" (i,m):" + i + "," + m + " n:" + n + " p[n]:" + p[n]);

int newpass[] = new int[pass.length + 1];

System.arraycopy(pass, 0, newpass, 0, pass.length);

newpass[pass.length] = p[n];

if (reset(p[n], n, newpass)) {

p[n] = i;

p[m] = -1;

return true;

}

}

}

return false;

}

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值