题目:一个整型数组里除了两个数字之外。其它的数字都出现了两次,请敲代码找出这两个仅仅出现一次的数字。
要求时间复杂度是O(n),空间复杂度是O(1)。
举例说明
比如输入数组{2, 4, 3, 6, 3, 2, 5 },由于仅仅有4 、6 这两个数字仅仅出现一次,其它数字都出现了两次,所以输出4和6 。
解题思路
这两个题目都在强调一个(或两个)数字仅仅出现一次,其它的出现两次。
这有什么意义呢?我们想到异或运算的一个性质:不论什么一个数字异或它自己都等于0。也就是说。 假设我们从头到尾依次异或数组中的每一个数字。那么终于的结果刚好是那个仅仅出现一次的数字,由于那些成对出现两次的数字所有在异或中抵消了。
想明确怎么解决这个简单问题之后,我们再回到原始的问题,看看能不能运用同样的思路。
我们试着把原数组分成两个子数组,使得每一个子数组包括一个仅仅出现一次的数字。而其它数字都成对出现两次。假设可以这样拆分成两个数组, 我们就行依照前面的办法分别找出两个仅仅出现一次的数字了。
我们还是从头到尾依次异或数组中的每一个数字,那么终于得到的结果就是两个仅仅出现一次的数字的异或结果。由于其它数字都出现了两次,在异或中所有抵消了。由于这两个数字肯定不一样,那么异或的结果肯定不为0。也就是说在这个结果数字的二进制表示中至少就有一位为1 。
我们在结果数字中找到第一个为1 的位的位置,记为第n 位。
如今我们以第n位是不是1为标准把原数组中的数字分成两个子数组,第一个子数组中每一个数字的第n 位都是1 , 而第二个子数组中每一个数字的第n 位都是0。
由于我们分组的标准是数字中的某一位是1 还是0 。 那么出现了两次的数字肯定被分配到同一个子数组。由于两个同样的数字的随意一位都是同样的,我们不可能把两个同样的数字分配到两个子数组中去,于是我们已经把原数组分成了两个子数组。每一个子数组都包括一个仅仅出现一次的数字,而其它数字都出现了两次。
我们已经知道怎样在数组中找出唯一一个仅仅出现一次数字。 因此到此为止所有的问题都已经攻克了。
代码实现
public class Test40 {
public static int[] findNumbersAppearanceOnce(int[] data) {
int[] result = {0, 0};
if (data == null || data.length < 2) {
return result;
}
int xor = 0;
for (int i : data) {
xor ^= i;
}
int indexOf1 = findFirstBit1(xor);
for (int i : data) {
if (isBit1(i, indexOf1)) {
result[0] ^= i;
} else {
result[1] ^= i;
}
}
return result;
}
private static int findFirstBit1(int num) {
int index = 0;
while ((num & 1) == 0 && index < 32) {
num >>>= 1;
index++;
}
return index;
}
private static boolean isBit1(int num, int indexBit) {
num >>>= indexBit;
return (num & 1) == 1;
}
public static void main(String[] args) {
int[] data1 = {2, 4, 3, 6, 3, 2, 5, 5};
int[] result1 = findNumbersAppearanceOnce(data1);
System.out.println(result1[0] + " " + result1[1]);
int[] data2 = {4, 6};
int[] result2 = findNumbersAppearanceOnce(data2);
System.out.println(result2[0] + " " + result2[1]);
int[] data3 = {4, 6, 1, 1, 1, 1};
int[] result3 = findNumbersAppearanceOnce(data3);
System.out.println(result3[0] + " " + result3[1]);
}
}
执行结果
本文转自mfrbuaa博客园博客,原文链接:http://www.cnblogs.com/mfrbuaa/p/5329962.html,如需转载请自行联系原作者