最佳路径

本文详细介绍了一种基于邻接表存储的图遍历算法,用于寻找从任意起点出发到图中任一节点的最佳路径油量。算法通过深度优先搜索(DFS)递归地探索所有可能的路径,并利用动态规划(DP)记录每个节点包含自身在内的最大油量值。最终输出的是全局最大油量值,即最优解。
摘要由CSDN通过智能技术生成

T1

看一看吧,超详细的注释

#include<bits/stdc++.h>   
using namespace std;
#define ll long long
const ll maxn=3e5+50;
ll n,head[maxn],cnt=0,W[maxn],ans=0,dp[maxn];  //dp[i]代表包含i点的最佳路径的油量
bool vis[maxn];
struct node{     
    ll nxt,to,val;                         //nxt表示从相同节点出发的下一条边的存储位置,to指这条边连接的点,val边权(here指走这条路所需油量)
}E[maxn<<1];                               // E[i]是一条边!
void add(ll u,ll v,ll w) {                 //构建邻接表存边
    E[++cnt].to=v;
    E[cnt].val=w;
    E[cnt].nxt=head[u];                    //1.      注:1.2.两行不能弄反
    head[u]=cnt;                           //2.
}
void dfs(ll now) {
    dp[now]=W[now];                        //一个点的初始最大值为它的点权  即这个城市可加的最大油量(因为路径可以是一个点)
    vis[now]=1;
    for (ll i=head[now];i;i=E[i].nxt) {    //访问从 now 出发的所有边    注:i是一条边
        ll v=E[i].to;                      //v是E[i]这条边所连的点
        if (vis[v]) continue;              //不能有重复点
        dfs(v);
        ans=max(ans,dp[now]+dp[v]-E[i].val);  //决定要不要走这条路到达下一个点(城市)
        dp[now]=max(dp[now],W[now]+dp[v]-E[i].val);  //注:W[now]不能写成dp[now]!
    }
    ans=max(ans,dp[now]);                  //更新
}
signed main(){
    cin>>n;
    for (ll i=1;i<=n;i++) cin>>W[i];
    ll a,b,c;
    for (ll i=1;i<n;i++) {
        cin>>a>>b>>c;
        add(a,b,c);
        add(b,a,c);
    }
    dfs(1);                                //任意一点都可以
    printf("%lld\n",ans);
    return 0;
}

 

转载于:https://www.cnblogs.com/lxy050129/p/10304311.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值