x+2y+3z=n的非负整数解数

题目:给一个正整数n,范围是[1,10^6],对于方程:x+2y+3z = n,其中x,y,z为非负整数,求有多少个这样的三元组

(x,y,z)满足此等式。

 

分析:先看x+2y=m,很明显这个等式的非负整数解数目为m/2 + 1,然后再看x+2y+3z = n,设k=n/3,那么它的解数目为:

ans = n/2+1+(n-3)/2+1+...+(n-3k)/2+1

 

所以就有:

LL Work(int n)
{
    LL ans = 0;
    for(int i=0;i<=n/3;i++)
        ans += (n - 3*i)/2 + 1;
    return ans;
}


进一步优化,我们不使用循环,直接合并,得到:

LL Work(LL n)
{
    LL k = n/3;
    LL ans = (n+2)*(k+1) - 3*k*(k+1)/2;
    if(k%2!=0 && ans%2==0)
        ans -= k/2+1;
    else
        ans -= k/2;
    return ans/2;
}


 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值