1 充分利用有序性 1.1 如果要scan操作,且不是很频繁,可以利用rowkey的有序性将需要一起扫描的数据放到一起。例如直接用时间戳。这样就可以按时间scan了。这个只要是简单的全表扫描都行。 1.2 同样是scan,还可以利用rowkey的有序性实现数据本地化,设同一类别的数据需要一起扫描,那就可以给rowkey加一个类别前缀。(为了节约磁盘空间,需将类别名称编码) 这个不如垂直爬虫,我要扫描新闻类,或者BBS类,就可以为rowkey加个编码后的新闻,bbs类别id,实现同一类别的url本地化。 1.3 组合rowkey 多个字段组合出rowkey,实现多字段排序以满足我们的程序设计需求,例如爬虫系统的需求有根据host ,优先级,等排序。这个完全可以是使用 hostid_pid(优先级)_urlid(哈希,或者md5) 2.1 避免热点 频繁按时间段查询,如果用时间戳作为rowkey会造成热点,所以这里需要将rowkey打散到各个节点,将压力分配到各个节点。例如人民币冠字号查询,如果rowkey是冠字号,hbase会将临近的冠字号作为rowkey放到同一个region。这样当频繁查询的时候,就会造成某个regionserver压力过大,形成热点,影响整体性能。