大数据在发电厂的应用_大数据时代火电厂的数据价值

本文探讨了大数据在火电厂的应用,指出企业在数据价值挖掘方面面临的挑战,包括不重视数据价值、缺乏长效机制和专业人才。文章阐述了火电厂的结构化、非结构化和多媒体数据类型,并强调了数据相关性分析的重要性。通过数据挖掘技术,如神经网络方法,可以发现有效信息,提高运营效率。最后,强调了数据价值挖掘在企业信息化全过程中的关键作用,以及在大数据时代,不同数据源结合的数据价值潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

随着近几年互联网的飞速发展和普及,数据呈持续性爆发增长,“大数据”时代的脚步已悄然而至。而传统的火力发电厂也正逐步向数字化电厂迈进,各种数字化仪表与设备已取代原有的机械式仪表与设备,DCS、SIS乃至ERP等系统也已在各个电厂普及。各类传感设备、移动终端、数据采集设备等产生的大量数据被保存、分析,用于指导火力发电厂的生产运营。可见,火力发电厂在向数字化电厂迈进的过程中,已经感受到“大数据”对企业管理与运营带来的冲击。1、面临的问题

数据的存储与保存,在信息技术日新月异的今天已不成问题,但对数据的分析应用乃至数据价值的深度挖掘却依然是摆在各个火力发电企业面前的难题。导致企业海量数据无法体现其深层价值的原因有3个方面:

1)不重视数据价值的挖掘。用平面、离散的眼光来看待数据,满足于各类生产实时数据的查看、统计报表的生成,没有重视数据间关系的分析及各类相关数据间的时间特性。

2)缺乏数据价值挖掘的长效机制。数据价值的深度挖掘,依靠数据分析模型逐步建立。如果没有对数据的长期分析跟踪,就不可能找到有效的分析模型。

3)缺乏专业知识高度融合的复合型人才。对数据进行分析,不仅需要具备火力发电厂的相关知识,也需要掌握足够的计算机专业知识,尤其是对各类数据库的理解与对结构化查询语句的熟练掌握。2、火力发电厂的数据分析

数据在火力发电厂主要存在以下3类:第一类结构化数据。直接展现企业生产一线各种信息,数据价值密度高,由于其有严格的数据类型、标准的查询语言等特点,易于挖掘出更高的数据价值。第二类非结构化数据。不是生产一线数据,但往往与企业管理契合度较高,数据价值密度中等,数据价值挖掘难度较大;第三类,多媒体数据。大部分对生产而言价值较小,但对于事故的视频回放分析有很高的价值,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值