吴恩达机器学习笔记46-K-均值算法(K-Means Algorithm)

  K-均值是最普及的聚类算法,算法接受一个未标记的数据集,然后将数据聚类成不同的
组。

  K-均值是一个迭代算法,假设我们想要将数据聚类成n 个组,其方法为:

首先选择?个随机的点,称为聚类中心(cluster centroids);

  对于数据集中的每一个数据,按照距离?个中心点的距离,将其与距离最近的中心点关
联起来,与同一个中心点关联的所有点聚成一类。

  计算每一个组的平均值,将该组所关联的中心点移动到平均值的位置。

  重复步骤2-4 直至中心点不再变化。

  下面是一个聚类示例:

              迭代 1 次

              迭代 3 次

              迭代 10 次

  用?1,?2,...,?? 来表示聚类中心,用?(1),?(2),...,?(?)来存储与第?个实例数据最近的聚类中
心的索引。

  K-均值算法也可以很便利地用于将数据分为许多不同组,即使在没有非常明显区分的组
群的情况下也可以。下图所示的数据集包含身高和体重两项特征构成的,利用K-均值算法将
数据分为三类,用于帮助确定将要生产的T-恤衫的三种尺寸。

转载于:https://www.cnblogs.com/sl0309/p/10508402.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值