Logit模型(Logit model,也译作“评定模型”,“分类评定模型”,又作Logistic regression,“逻辑回归”)是离散选择法模型之一,Logit模型是最早的离散选择模型,也是目前应用最广的模型。
是社会学、生物统计学、临床、数量心理学、计量经济学、市场营销等统计实证分析的常用方法。Logit模型是最早的离散选择模型,也是目前应用最广的模型。Logit模型是Luce(1959)根据IIA特性首次导出的;Marschark(1960)证明了Logit模型与最大效用理论的一致性。
Logit模型的应用广泛性的原因主要是因为其概率表达式的显性特点,模型的求解速度快,应用方便。
扩展资料
根据Logit模型的IIA特性,选择枝的减少或者增加不影响其他各选择之间被选概率比值的大小,因此,可以直接将需要去掉的选择枝从模型中去掉,也可将新加入的选择枝添加到模型中直接用于预测。
与概率不同,Logit的一个很重要的特性就是没有上下限——这就给建模带来极大方便。
Logit模型能够在一定程度上克服模型事后预测事前事件的缺陷,综合了FR模型中FR概率分析法和KLR模型中信号分析法的优点,但是,它只是在利率、汇率等几个主要金融资产或经济指标的基础上预警投机冲击性货币危机,与一般货币危机预警还有所差异。
参考资料来源:百度百科-logit模型