[树状数组的优越性]

 开头声明

  树状数组 还是 没有 线段树 优越(理直气壮)

1、前言

    这么简单的东西一直没有来看一眼。。。因为最初学数据结构的时候就曾从各方各面了解到线段树的各种优越性,各种比树状数组好,于是就看了线段树就没管了。。。但是树状数组的常数小,代码短这些隐性优势也许当时并不清楚吧。

2、概念

       树状数组,依旧是一个线性数组构成,但是其性质却如同树结构一样是立体的。如图所示,我们首先给出一个最基本的a数组的一部分,大家可以观察一下上方的c数组有什么规律?

我们将箭头看做该节点的儿子节点,每一个节点的权值为所有儿子节点的权值和,易得:

 

c[1]=a[1];c[2]=a[1]+a[2];c[3]=a[3];c[4]=c[2]+a[3]+a[4]=a[1]+a[2]+a[3]+a[4];

 

              c[5]=a[5];c[6]=a[5]+a[6];c[7]=a[7];c[8]=c[4]+c[6]+a[7]=a[1]+a[2]+...+a[8]。

没错,上方的c数组就是树状数组。分析数据之后,我们可以得到树状数组的一些性质:对于c[i],他的儿子节点取决于i的所有因子中最多有2^j次幂,则向前取2^j个数作为儿子,即[i-2^j+1,i]。例如,6的最大2次方因子为2,即2^1,则向前取2个数,则c[6]=a[5]+a[6];8的最大2次方因子为8,即2^3,则向前取8个数,则c[8]=a[1]+a[2]+...+a[8]。

3、构建&询问&修改

三个步骤,一起讲了吧,都很简单。

<1>构建:应该并不存在什么难度,唯一要考虑的就是如何得到为该数因子中最大的2^x是多少。我自己在想的时候只能想到很复杂的还要预处理的方式,其实巧妙地利用位运算符就可以以O(1)的速度直接得到,至于原因,没有去考虑,记着就行吧。代码:

------------------------------------------------------------------------------------------------------

int lowbit(int x) { return x&(-x); }

------------------------------------------------------------------------------------------------------

 

<2>求数组的和:我们注意到,树状数组在求和的时候,相对于普通数组的优势就像树链剖分和普通LCA一样。每次我们不需要一个一个相加,直接利用当前位置的lowbit值跳转即可,如代码:

------------------------------------------------------------------------------------------------------

int getSum(int now)

{

  int sum=0;

  while (now>0) sum+=c[now],now-=lowbit(now);

  return sum;

}

------------------------------------------------------------------------------------------------------

 

<3>单点修改权值:同样地,修改也是非常快的,O(log n),假设当前为节点i加上val,如代码:

------------------------------------------------------------------------------------------------------

int update(int i,int val) { while (i<=n) c[i]+=x,i+=lowbit(i); }

------------------------------------------------------------------------------------------------------

4、总结

       显然可以看出来了,树状数组空间复杂度小些,代码短些,常数也小些,这些平时可能不是很注意的优势都要注意,虽然它的功能缺失逊于线段树,但是在能够使用树状数组的情况下,我觉得还是可以多用用。

 

转载于:https://www.cnblogs.com/-Wind-/p/10458548.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
树状数组(Fenwick Tree)是一种用于快速维护数组前缀和的数据结构。它可以在 $O(\log n)$ 的时间内完成单点修改和前缀查询操作,比线段树更加简洁高效。 下面是 Java 实现的树状数组详解: 首先,在 Java 中我们需要使用数组来表示树状数组,如下: ``` int[] tree; ``` 接着,我们需要实现两个基本操作:单点修改和前缀查询。 单点修改的实现如下: ``` void update(int index, int value) { while (index < tree.length) { tree[index] += value; index += index & -index; } } ``` 该函数的参数 `index` 表示要修改的位置,`value` 表示修改的值。在函数内部,我们使用了一个 `while` 循环不断向上更新树状数组中相应的节点,直到到达根节点为止。具体来说,我们首先将 `tree[index]` 加上 `value`,然后将 `index` 加上其最后一位为 1 的二进制数,这样就可以更新其父节点了。例如,当 `index` 为 6 时,其二进制表示为 110,最后一位为 2^1,加上后变为 111,即 7,这样就可以更新节点 7 了。 前缀查询的实现如下: ``` int query(int index) { int sum = 0; while (index > 0) { sum += tree[index]; index -= index & -index; } return sum; } ``` 该函数的参数 `index` 表示要查询的前缀的结束位置,即查询 $[1, index]$ 的和。在函数内部,我们同样使用了一个 `while` 循环不断向前查询树状数组中相应的节点,直到到达 0 为止。具体来说,我们首先将 `sum` 加上 `tree[index]`,然后将 `index` 减去其最后一位为 1 的二进制数,这样就可以查询其前一个节点了。例如,当 `index` 为 6 时,其二进制表示为 110,最后一位为 2^1,减去后变为 100,即 4,这样就可以查询节点 4 的值了。 最后,我们还需要初始化树状数组,将其全部置为 0。初始化的实现如下: ``` void init(int[] nums) { tree = new int[nums.length + 1]; for (int i = 1; i <= nums.length; i++) { update(i, nums[i - 1]); } } ``` 该函数的参数 `nums` 表示初始数组的值。在函数内部,我们首先创建一个长度为 `nums.length + 1` 的数组 `tree`,然后逐个将 `nums` 中的元素插入到树状数组中。具体来说,我们调用 `update(i, nums[i - 1])` 来将 `nums[i - 1]` 插入到树状数组的第 `i` 个位置。 到此为止,我们就完成了树状数组的实现。可以看到,树状数组的代码比线段树要简洁很多,而且效率也更高。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值