P4213 【模板】杜教筛(Sum)(杜教筛)

根据狄利克雷卷积的性质,可以在低于线性时间复杂度的情况下,求积性函数前缀和
公式

\[ 求\sum_{i=1}^{n}\mu(i) \]

因为\(\mu*I=\epsilon\)

所以设\(h=\mu*I,S_n=\sum_{i=1}^n\mu(i)\)
\[ \sum_{i=1}^{n}h(i)\]
\[=\sum_{i=1}^{n}\sum_{d|i}\mu(\lfloor\frac{i}{d}\rfloor)\times I(d)\]
\[=\sum_{i=1}^nI(i)\sum_{j=1}^{\lfloor \frac{n}{i}\rfloor}\mu(j) \]
\[ =\sum_{i=1}^nI(i)\times S(\lfloor\frac{n}{i}\rfloor) \]
\[ =I(1)\times S(n)+\sum_{i=2}^nI(i)\times S(\lfloor\frac{n}{i}\rfloor)\]
\[ I(1)\times S(n)=\sum_{i=1}^{n}h(i)-\sum_{i=2}^{n}S(\lfloor\frac{n}{i}\rfloor) \]
\[ S(n)=1-\sum_{i=2}^n{S(\lfloor\frac{n}{i}\rfloor)} \]

\[ 求\sum_{i=1}^n\phi(i) \]

因为\(\phi*I=id\)

所以设\(h=\phi*I,S_n=\sum_{i=1}^n\phi_i\)
\[ \sum_{i=1}^nh(i)\]\[=\sum_{i=1}^n\sum_{d|i}\phi(\lfloor\frac{i}{d}\rfloor)\times I(d)\]\[=\sum_{i=1}^nI(i)\times \sum_{d|i}\phi(\lfloor\frac{i}{d}\rfloor)\]\[=\sum_{i=1}^nI(i)\times \sum_{t=1}^{\lfloor\frac{n}{i}\rfloor}\phi(t)\]\[ =\sum_{i=1}^nI(i)\times S(\lfloor\frac{n}{i}\rfloor)\]\[ =I(1)\times S(n)+\sum_{i=2}^n I(i)\times S(\lfloor\frac{n}{i}\rfloor) \]\[ S(n)=\sum_{i=1}^nh(i)-\sum_{i=2}^n I(i)\times S(\lfloor\frac{n}{i}\rfloor) \]\[ S(n)=\frac{(n+1)\times n}{2}-\sum_{i=2}^n I(i)\times S(\lfloor\frac{n}{i}\rfloor) \]

注意事项
  • 尽量减少常数
  • 开头线性筛预处理的时候尽量开到\(n^{\frac{2}{3}}\)或更大
  • long long和int要区别
  • 枚举2 TO N 可以整除分块

    代码
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <unordered_map>
using namespace std;
const int MAXN = 5000000;
unordered_map<int,long long> Sumphi;
unordered_map<int,long long> Summu;
int iprime[MAXN+5],cnt;
long long mu[MAXN+5],phi[MAXN+5];
bool isprime[MAXN+5];
void prime(int n){
    isprime[1]=true;
    mu[1]=1;
    phi[1]=1;
    for(int i=2;i<=n;i++){
        if(!isprime[i])
            iprime[++cnt]=i,phi[i]=i-1,mu[i]=-1;
        for(int j=1;j<=cnt&&iprime[j]*i<=n;j++){
            isprime[iprime[j]*i]=true;
            mu[iprime[j]*i]=-mu[i];
            phi[iprime[j]*i]=phi[i]*(iprime[j]-1);
            if(i%iprime[j]==0){
                mu[iprime[j]*i]=0;
                phi[iprime[j]*i]=phi[i]*(iprime[j]);
                break;
            }
        }
    }
    for(int i=1;i<=n;i++){
        mu[i]+=mu[i-1];
        phi[i]+=phi[i-1];
    }
}
long long djsmu(int n){//first mu second phi
    if(n<=MAXN)
        return mu[n];
    if(Summu.count(n))
        return Summu[n];
    int mid1=0;
    for(int i=2,j;i<=n;i=j+1){
        j=min(n/(n/i),n);
        mid1+=(j-i+1)*djsmu(n/i);
    }
    Summu[n]=1-mid1;
    return Summu[n];
}
long long djsphi(int n){//first mu second phi
    if(n<=MAXN)
        return phi[n];
    if(Sumphi.count(n))
        return Sumphi[n];
    long long mid1=0;
    for(int i=2,j;i<=n;i=j+1){
        j=min(n/(n/i),n);
        mid1+=(j-i+1)*djsphi(n/i);
    }
    Sumphi[n]=1LL*(n+1)*n/2-mid1;
    return Sumphi[n];
}
int main(){
    prime(MAXN);
    int T,n;
    scanf("%d",&T);
    for(int i=1;i<=T;i++){
        scanf("%d",&n);
        printf("%lld %d\n",djsphi(n),djsmu(n));
    }
    return 0;
}

转载于:https://www.cnblogs.com/dreagonm/p/10077979.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值