python过采样fit参数_KernelADASYN过采样方法

KernelADASYN是一种过采样方法,用于处理类别不平衡问题。它结合了核密度估计和最近邻思想,通过Markov Chain Monte Carlo实现。参数包括比例、邻居数和核带宽。在采样过程中,若协方差矩阵不适定,会进行降维处理。该方法通过生成新的少数类样本来平衡数据集。
摘要由CSDN通过智能技术生成

classKernelADASYN(OverSampling):"""Notes:

* The method of sampling was not specified, Markov Chain Monte Carlo has been implemented.

* Not prepared for improperly conditioned covariance matrix."""categories=[OverSampling.cat_density_estimation,

OverSampling.cat_extensive,

OverSampling.cat_borderline]def __init__(self, proportion= 1.0, k= 5, h= 1.0, n_jobs= 1):"""Constructor of the sampling object

Args:

proportion (float): proportion of the difference of n_maj and n_min to sample

e.g. 1.0 means that after sampling the number of minority

samples will be equal to the number of majority samples

k (int): number of neighbors in the nearest neighbors component

h (float): kernel bandwidth

n_jobs (int): number of parallel jobs"""super().__init__()

self.check_greater_or_equal(proportion,&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值