单调递增子序列(二)
时间限制:
1000 ms | 内存限制:
65535 KB
难度:
4
-
描述
-
给定一整型数列{a1,a2...,an}(0<n<=100000),找出单调递增最长子序列,并求出其长度。
如:1 9 10 5 11 2 13的最长单调递增子序列是1 9 10 11 13,长度为5。
-
输入
- 有多组测试数据(<=7) 每组测试数据的第一行是一个整数n表示序列中共有n个整数,随后的下一行里有n个整数,表示数列中的所有元素.每个整形数中间用空格间隔开(0<n<=100000)。 数据以EOF结束 。 输入数据保证合法(全为int型整数)! 输出
- 对于每组测试数据输出整形数列的最长递增子序列的长度,每个输出占一行。 样例输入
-
7 1 9 10 5 11 2 13 2 2 -1
样例输出
-
5 1
/* 代码一: 经典求法---TLE #include <iostream> #include <cstdio> const int N = 100000 + 10; using namespace std; int a[N], dp[N]; int main() { int n, maxlen; while(scanf("%d", &n) != EOF) { maxlen = 0; for(int i = 0; i < n; ++i) { scanf("%d", &a[i]); dp[i] = 1; for(int j = 0; j < i; ++j) { if(a[j] < a[i] && dp[j] + 1 > dp[i]) dp[i] = dp[j] + 1; if(maxlen < dp[i]) maxlen = dp[i]; } } printf("%d\n", maxlen); } return 0; } 代码二: 这是一个很好的题目。题目的算法还是比较容易看出来的,就是求最长上升子序列的长度。 不过这一题的数据规模最大可以达到40000,经典的O(n^2)的动态规划算法明显会超时。 我们需要寻找更好的方法来解决是最长上升子序列问题。 先回顾经典的O(n^2)的动态规划算法,设A[i]表示序列中的第i个数,F[i]表示从1到i这一段 中以i结尾的最长上升子序列的长度,初始时设F[i] = 0(i = 1, 2, ..., len(A))。则有动态规划方程:F[i] = max{1, F[j] + 1} (j = 1, 2, ..., i - 1, 且A[j] < A[i])。 现在,我们仔细考虑计算F[i]时的情况。假设有两个元素A[x]和A[y],满足 (1) x < y < i (2) A[x] < A[y] < A[i] (3) F[x] = F[y] 此时,选择F[x]和选择F[y]都可以得到同样的F[i]值,那么,在最长上升子序列的这个位置中, 应该选择A[x]还是应该选择A[y]呢? 很明显,选择A[x]比选择A[y]要好。因为由于条件(2),在A[x+1] ... A[i-1]这一段中, 如果存在A[z],A[x] < A[z] < a[y],则与选择A[y]相比,将会得到更长的上升子序列。 再根据条件(3),我们会得到一个启示:根据F[]的值进行分类。对于F[]的每一个取值k, 我们只需要保留满足F[i] = k的所有A[i]中的最小值。设D[k]记录这个值, 即D[k] = min{A[i]} (F[i] = k)。 注意到D[]的两个特点: (1) D[k]的值是在整个计算过程中是单调不上升的。 (2) D[]的值是有序的,即D[1] < D[2] < D[3] < ... < D[n]。 利用D[],我们可以得到另外一种计算最长上升子序列长度的方法。设当前已经求出的 最长上升子序列长度为len。先判断A[i]与D[len]。若A[i] > D[len], 则将A[i]接在D[len]后将得到一个更长的上升子序列,len = len + 1, D[len] = A[i]; 否则,在D[1]..D[len]中,找到最大的j,满足D[j] < A[i]。令k = j + 1,则有D[j] < A[i] <= D[k], 将A[i]接在D[j]后将得到一个更长的上升子序列,同时更新D[k] = A[i]。 最后,len即为所要求的最长上升子序列的长度。 在上述算法中,若使用朴素的顺序查找在D[1]..D[len]查找,由于共有O(n)个元素需要计算, 每次计算时的复杂度是O(n),则整个算法的时间复杂度为O(n^2),与原来的算法相比没有任何进步。 但是由于D[]的特点(2),我们在D[]中查找时,可以使用二分查找高效地完成,则整个算法的时间复杂度 下降为O(nlogn),有了非常显著的提高。需要注意的是,D[]在算法结束后记录的并不是一个符合题意的 最长上升子序列! 这个算法还可以扩展到整个最长子序列系列问题,整个算法的难点在于二分查找的设计,需要非常小心注意。 */ #include <iostream> #include <cstdio> const int N = 100000 + 10; using namespace std; int a[N], dp[N]; int binarysearch(int k, int len) { int right = len; int left = 1; int mid = (right + left) >> 1; while(left <= right) { if(k == dp[mid]) return mid; if(k > dp[mid]) left = mid + 1; else right = mid - 1; mid = (right + left) >> 1; } return left; } int main() { int n; while(~scanf("%d", &n)) { int len, t; for(int i = 0; i < n; ++i) scanf("%d", &a[i]); len = 1; dp[1] = a[0]; for(int i = 1; i < n; ++i) { t = binarysearch(a[i], len); dp[t] = a[i]; if(t > len) len = t; } printf("%d\n", len); } return 0; }