[UOJ62]怎样跑得更快

以下用等号代替同余

这个式子是$\sum\limits_{j=1}^n(i,j)^{c-d}i^dj^dx_j=b_i$

令$g(n)=\sum\limits_{e|n}\mu\left(\frac ne\right)e^{c-d}$,那么原式变为$\sum\limits_{e|i}g(e)\sum\limits_{\substack{e|j\\1\leq j\leq n}}j^dx_j=\frac{b_i}{i^d}$

令$z_e=\sum\limits_{\substack{e|j\\1\leq j\leq n}}j^dx_j$,先处理原式

$\sum\limits_{e|i}g(e)z_e=\frac{b_i}{i^d}\Leftrightarrow g(i)z_i=\sum\limits_{e|i}\mu\left(\frac ie\right)\frac{b_e}{e^d}$

$g(i)$和上式右边都可以$O(n\log n)$预处理,此时如果存在$i$使$g(i)=0$且右边$\ne0$那么无解,两个都是$0$就多解,随便给$z_i$赋值即可

最后求$x_i$:$x_ii^d=\sum\limits_{\substack{i|j\\1\leq j\leq n}}\mu\left(\frac ji\right)z_j$

正如vfk的题解所说:三个莫比乌斯反演掷地有声==

写快速幂时要注意负指数的处理...

#include<stdio.h>
#include<string.h>
char s[4000000];
int ns;
#define NUM(x) ('0'<=x&&x<='9')
inline int rd(){
	while(!NUM(s[ns]))ns++;
	int x=0;
	while(NUM(s[ns]))x=x*10+s[ns++]-'0';
	return x;
}
typedef long long ll;
const int mod=998244353,T=100000;
int mul(int a,int b){return(ll)a*b%mod;}
void inc(int&a,int b){(a+=b)%=mod;}
int pow(int a,int b){
	int s=1;
	while(b<0)b+=mod-1;
	while(b){
		if(b&1)s=mul(s,a);
		a=mul(a,a);
		b>>=1;
	}
	return s;
}
int pr[T+10],mu[T+10],nd[T+10],d;
bool np[T+10];
void sieve(){
	int i,j,M=0;
	mu[1]=1;
	nd[1]=1;
	for(i=2;i<=T;i++){
		if(!np[i]){
			pr[++M]=i;
			mu[i]=-1;
			nd[i]=pow(i,-d);
		}
		for(j=1;j<=M&&i*pr[j]<=T;j++){
			np[i*pr[j]]=1;
			nd[i*pr[j]]=mul(nd[i],nd[pr[j]]);
			if(i%pr[j]==0)break;
			mu[i*pr[j]]=-mu[i];
		}
	}
}
int b[T+10],g[T+10],h[T+10],n,c;
int main(){
	fread(s,1,4000000,stdin);
	int q,i,j,t;
	n=rd();
	c=rd();
	d=rd();
	q=rd();
	sieve();
	for(i=1;i<=n;i++){
		t=pow(i,c-d);
		for(j=1;i*j<=n;j++)inc(g[i*j],mu[j]*t);
	}
	for(i=1;i<=n;i++)g[i]=pow(g[i],mod-2);
	while(q--){
		for(i=1;i<=n;i++)b[i]=mul(rd(),nd[i]);
		memset(h,0,sizeof(h));
		for(i=1;i<=n;i++){
			t=b[i];
			for(j=1;i*j<=n;j++){
				if(mu[j])inc(h[i*j],mu[j]*t);
			}
		}
		for(i=1;i<=n;i++){
			if(g[i]==0&&h[i]!=0){
				i=-1;
				break;
			}
			h[i]=mul(h[i],g[i]);
		}
		if(i==-1){
			puts("-1");
			continue;
		}
		for(i=1;i<=n;i++){
			t=0;
			for(j=1;i*j<=n;j++)inc(t,mu[j]*h[i*j]);
			t=mul(nd[i],t);
			inc(t,mod);
			printf("%d ",t);
		}
		putchar('\n');
	}
}

转载于:https://www.cnblogs.com/jefflyy/p/9607956.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值