用图像解不等式

一、常见的题型和解法

1、为什么要用图像解不等式?自然是用数的角度不能顺利求解,要么不等式是超越不等式,要么是抽象不等式,或者是分段函数不等式等等;总之一句话,从数的角度思考不能解决的,都可以尝试考虑换个角度,从形入手分析。

2、如何用图像解不等式?

3、用图像解不等式都有哪些题型?

静雅凤中$\;\cdot\;$数形结合 【类型①】例1用图像解抽象或分段不等式; 解法思路:利用条件先做出抽象函数的图像,然后读图解不等式函数$f(x)$是周期为4的偶函数,当$x\in[0,2]$时,$f(x)=x-1$,求不等式$x\cdot f(x)>0$在$[-1,3]$上的解集。

992978-20170712221900962-402066491.png 法1:自己作图如右,读图即可解答,解集为$(-1,0)\cup(1,3)$; 法2:利用积的符号法则求解, 原不等式等价于$\begin{cases}x>0\\f(x)>0\end{cases}$或$\begin{cases}x<0\\f(x)<0\end{cases}$, 读图即可解答,解集为$(-1,0)\cup(1,3)$;

感悟反思:1、学图像,用图像,天经地义。2、熟练掌握分段函数的图像,对解题很有帮助。 静雅凤中$\;\cdot\;$数形结合 【类型②】例2用图像解超越不等式; 解法思路:利用条件先做出抽象函数的图像,然后读图解不等式解关于$x$的不等式$lnx>1-x$;

992978-20170712215859400-267257946.png 分析:你应该能感觉到,这个题目用我们平常的那种解法(代数解法)已经不能做出来了, 因为它不是我们熟悉的那种代数不等式,而是超越不等式,这时候就需要我们借助图像来求解。 比如分别作出两个函数$y=lnx$和$y=1-x$的图像观察求解,如右图所示,解集为$(1,+\infty)$; 思路2:从数的角度,利用函数计算,令$g(x)=lnx+x-1(x>0)$, 则$g'(x)=\cfrac{1}{x}+1>0$恒成立,故$g(x)$在$(0,+\infty)$上单调递增, 又$g(1)=0$,故$0< x<1$时,$g(x)<0$,$x>1$时$g(x) >0$, 综上,故$x$的取值范围为$(1,+\infty)$。

感悟反思:1、同类题目牛刀小试一下,解关于$x$的不等式$2^x>1-x$;解集为$(0,+\infty)$; 解关于$x$的不等式$log_2^x>\cfrac{2}{x}$;解集为$(2,+\infty)$; 2、 超越不等式 静雅凤中$\;\cdot\;$数形结合 【类型③】例3用图像解构造的函数不等式; 解法思路:利用条件先做出导函数的图像,然后读图解不等式(2015$\cdot$全国卷2)设函数$f'(x)$是奇函数$f(x)(x\in R)$的导函数,$f(-1)=0$,当$x>0$时,$xf'(x)-f(x)<0$,则使得$f(x)>0$成立的$x$的取值范围是【】 A.$(-\infty,-1)\cup(0,1)$ $\hspace{1cm}$ B.$(-1,0)\cup(1,+\infty)$ $\hspace{1cm}$ C.$(-\infty,-1)\cup(-1,0)$ $\hspace{1cm}$ D.$(0,1)\cup(1,+\infty)$

【法1】注意到$xf'(x)-f(x) <0$,故构造函数$g(x)=\cfrac{f(x)}{x}$,则函数$g(x)$为偶函数; 992978-20180329101646113-550006656.png $g'(x)=\cfrac{xf'(x)-f(x)}{x^2}$,结合当$x>0$时,$xf'(x)-f(x)<0$, 可知,当$x >0$时,$g'(x)<0$,即$g(x)$在$(0,+\infty)$上单调递减, 由偶函数可知,$g(x)$在$(-\infty,0)$上单调递增, 又$f(-1)=0$,即$g(-1)=\cfrac{f(-1)}{-1}=0$,且$g(1)=g(-1)=0$, 从而做出$g(x)$的图像如右图所示, 以下说明如何利用$g(x)$的图像解不等式$f(x)>0$; 第一象限的函数图像(注意此时有$0 < x <1$),满足$g(x)=\cfrac{f(x)}{x}>0$ 且 $x >0$, 由符号法则得$f(x)>0$,将这段函数图像向$x$轴作射影, 得到$0< x <1$,即当$0< x <1$时,必有$f(x) >0$ 成立; 同理可知,由第二象限的图像,注意此时有$-1< x <0$及 $g(x)>0$,可得当$-1< x <0$时,必有$f(x)<0$,不符; 同理,由第三象限的图像,注意此时有$x 0$,可得当$x 0$,符合; 同理,由第四象限的图像,注意此时有$x >1$及 $g(x) <0$,可得当$x >1$时,必有$f(x) <0$,不符; 综上所述,$f(x)>0$的解集是$(-\infty,-1)\cup(0,1)$。选A 【法2】有了法1做基础,我们可以简化如下,$y$轴右侧的图像,代表$x >0$, 那么$g(x)=\cfrac{f(x)}{x}$的分母就为正,现在要求解$f(x) >0$,此时必然会选择$x$轴上方的图像,其满足 $g(x) >0$, 故将这段图像向$x$轴作射影,落在区间$(0 ,1)$上,故有$0< x <1$时,$f(x) >0$; 而$y$轴左侧的图像,代表$x <0$, 那么$g(x)=\cfrac{f(x)}{x}$的分母就为负,现在要求解$f(x)>0$,此时必然会选择$x$轴下方的图像,其满足 $g(x)<0$, 故将这段图像向$x$轴作射影,落在区间$(-\infty ,-1)$上,说明$x 0$; 综上所述,$f(x)>0$的解集是$(-\infty,-1)\cup(0,1)$。选A

感悟反思:1、若$g(x)=x\cdot f(x)$或者$g(x)=\cfrac{f(x)}{x}$,由符号法则可知,$g(x)$的正负取决于其因子$x$和$f(x)$的正负;2、

例4【构造函数】【构造函数解不等式】
\(f(x)\)\(g(x)\)分别是定义在\(R\)上的奇函数和偶函数,且\(g(x)≠0\),当\(x<0\)\(f′(x)g(x)>f(x)g′(x)\),且\(f(-3)=0\),则不等式\(f(x)g(x)<0\)的解集是______.

分析:令\(h(x)=\cfrac{f(x)}{g(x)}\),则可知\(h(x)\)为奇函数,

\(h'(x)=\cfrac{f'(x)g(x)-f(x)g'(x)}{g^2(x)}\)

\(x<0\)\(f′(x)g(x)>f(x)g′(x)\)

可得\(x\in(0,+\infty)\)时,\(h'(x)>0\),即\(h(x)\)单调递增,

由奇函数可知,\(x\in (-\infty,0)\)时,\(h(x)\)单调递增,

\(h(0)=0\),由\(f(-3)=0\)还可得到\(h(-3)=h(3)=0\)

做出示意图,由图可知,

故由\(h(x)=\cfrac{f(x)}{g(x)}<0\),可得\(x\in(-\infty,-3)\cup(0,3)\)

\(\cfrac{f(x)}{g(x)}<0\)等价于\(f(x)g(x)<0\)

故不等式\(f(x)g(x)<0\)的解集是\(x\in(-\infty,-3)\cup(0,3)\)

补充:用图像解三角不等式、对数不等式、指数不等式等等,还有代数不等式,如二次不等式;一次不等式,分式不等式,高次不等式等等。


cnblogs_xglj02.bmp\(\fbox{图像的使用角度}\)
1、用导函数的图像判断原函数的单调性

2、用图像求定义域

3、用图像求值域

4、用图像判断单调性

5、用图像判断奇偶性

6、用图像判断周期性

7、用图像判断对称性

8、用图像解读函数特殊点值。

转载于:https://www.cnblogs.com/wanghai0666/p/8668039.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值