高中数学教师解题研究 QQ群:659290115
文:朱欢
对于求解抽象函数不等式问题,往往需要综合应用函数的单调性、奇偶性、对称性、周期性、定义域、值域等知识,属于综合性比较强的问题,可难可易,在备考中,要引起我们的重视.
如何把握这一类问题的本质,研究它们的通法通解以及变式拓展,这是我们迫切关心的问题.下面我们将从一个高考经典母题出发,去探索抽象函数不等式的本源以及变式研究.
函数不等式的解法通常是利用函数单调性,脱去抽象符合“f”,转化为一般不等式求解,所以解这类问题一般要先研究函数的有关性质,如单调性、奇偶性等,此类问题经常与导数结合,需要重新构造函数求导,然后利用函数单调性解决.
01
直接解抽象函数不等式
02
构造函数求导,利用单调性求解抽象不等式
解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.对于构造函数求导数问题
03
多次构造函数求导,利用单调性求解抽象不等式
04
构造导函数,结合函数奇偶性求解抽象函数不等式
05
构造导函数,结合函数对称性解抽象不等式的解法
06
构造导函数,多次求导,求解抽象函数不等式
今日彩蛋:公众号后台回复关键词“16”有彩蛋,8月30日18:00过期。
07
抽象不等式与大小比较
抽象函数不等式问题属于综合性比较强的问题,可难可易,在备考中,我们只有准确理解了抽象函数的特点,才可能正确找到“解题之钥”.
高中数学教研QQ群 :659290115
点“”加入高中数学教研群