对抽象函数求导_常考点!巧构函数处理抽象函数不等式问题探究

高中数学教师解题研究 QQ群:659290115

db3c74fd83526090d46b24de7ccc6346.png

文:朱欢

对于求解抽象函数不等式问题,往往需要综合应用函数的单调性、奇偶性、对称性、周期性、定义域、值域等知识,属于综合性比较强的问题,可难可易,在备考中,要引起我们的重视.

如何把握这一类问题的本质,研究它们的通法通解以及变式拓展,这是我们迫切关心的问题.下面我们将从一个高考经典母题出发,去探索抽象函数不等式的本源以及变式研究.

7aeb083d46081d6613c85a3a67ce06fa.png

a3143f1cc1d13303078027c1b1a43267.png

a32b9ff37e1dd5b1472d75a8601564e9.png

函数不等式的解法通常是利用函数单调性,脱去抽象符合“f”,转化为一般不等式求解,所以解这类问题一般要先研究函数的有关性质,如单调性、奇偶性等,此类问题经常与导数结合,需要重新构造函数求导,然后利用函数单调性解决.

d0861b04e036e4dc8286ce35d1db4770.png

01

直接解抽象函数不等式

e03e471c4bdba7178cbea6d9bd890a5a.png

bad615fc788f6734957cfe39114d66fa.png

51470c46909b322a7b94f51f32fc81f0.png

02

构造函数求导,利用单调性求解抽象不等式

2dd7e8badaab6421c170f7b690ce286d.png

fe6f1e394050234f0612183389d58db1.png

9b4e8735127c72bb8471d619de9e56da.png

解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.对于构造函数求导数问题

bff98ed1072574719ebad0092486f9b2.png

c30a18d8b52bcde45af92e1ea27ca4c1.png

27db66ab4179fad55c864809123ae33a.png

b3b29ad0ffcf557c7d85e7f424e4f0c9.png

1013d55c2e2e569d0235ea858f4704a6.png

03

多次构造函数求导,利用单调性求解抽象不等式

262b4fb5082cc55ff9ee69179b711b9f.png

89f244b62f9765cbcc382d3f2d319622.png

54726df13367e37f22b081f1064f2132.png

9d28a68faa35e4c61e903a7e7e42fc30.png

387d7051d0fc751d0364b17a19b7c51d.png

8a4e24e405f62303c8c15f1704f077eb.png

681f84db4ccbd5db99a0cad8e563afbd.png

d1086bb308000d10c36bd261a12b8875.png

63f291909f8dd7e5bc96050f94b4746f.png

04

构造导函数,结合函数奇偶性求解抽象函数不等式

c5876dd575da431aeae49523003b71a4.png

7eb88283af4408f1fb2cbc8b9a71020b.png

8555c04c6c969ca88cb30e94ea9f4dac.png

6890a3d6f73ab012bd5a7d3dd8f85c7c.png

1f39b2e5c19766d950f6a15777e6ad5b.png

3ce82a9ff06f8f070d7f090ed5ac662b.png

0060cc3cf990abe3b4f7dcf2e6f171e5.png

f925e82c37148fd3b96020f13a4637bf.png

22a92c9b8996613a8e40fece4f6d045b.png

ed1dbcfaaf21534137b3b5fb677d9932.png

bd4f926ec135adfdb6f3dd3c0f719732.png

05

构造导函数,结合函数对称性解抽象不等式的解法

acb0776067cd7139660391524e987a77.png

6b155a9e91ae010dfe45cd4536651abb.png

b5127463f433b5ba8a1b170e09f3a1a8.png

237b7c4df67e2f07ceb2ea4d834d24c4.png

2d3a4755f1639f411c693465709460be.png

bd0b5e51df3a5ae019ce79ff9bb7d846.png

da9519549a63de407f1ddefb44a2046e.png

89501c8ac59e9077af9ef5cc577bb350.png

06

构造导函数,多次求导,求解抽象函数不等式

a295504fc307a0d6fc9470e11ccb3dd5.png

e7817e6aeec81d14d577c7a719651b7c.png

c904918aa9bfffa8b861e9722f5408ff.png

09efd25c029e76d571bd8e8f9e219a2c.png

b394b8109784885f421c8d575a6fe0b7.png

今日彩蛋:公众号后台回复关键词“16”有彩蛋,8月30日18:00过期。

07

抽象不等式与大小比较

4862fb8ae92ad9afac1b2b9b9848e36a.png

55c90290ef94d7454d4836db298040bd.png

06c9b015f7479a3578f63a48de26b16c.png

抽象函数不等式问题属于综合性比较强的问题,可难可易,在备考中,我们只有准确理解了抽象函数的特点,才可能正确找到“解题之钥”.

877be62413e1b6b4358f6d0d0ad0e4ae.png

高中数学教研QQ群 :659290115

7c11ab869ed19a8a36c92ac4b72fe9c8.png

56620120051967f65f39a3d9d197dcc7.gif点“”加入高中数学教研群

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值