股票的最大收益(最多交易k次)Best Time to Buy and Sell Stock IV

问题:

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most k transactions.

Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

解决:

【题意】用一个数组表示股票每天的价格,数组的第i个数表示股票在第i天的价格。最多交易k次,手上最多只能持有一支股票,求最大收益。

①  特殊动态规划法。我们用一个局部最优解和全局最优解表示到第i天进行j次的收益,这就是该动态规划的特殊之处。

用local[i][j]表示到达第i天时,最多进行j次交易的局部最优解用global[i][j]表示到达第i天时,最多进行j次的全局最优解。它们二者的关系如下(其中diff = prices[i] – prices[i – 1]):

local[i][j] = max(global[i – 1][j – 1] + max(diff, 0), local[i – 1][j] + diff)
global[i][j] = max(global[i – 1][j], local[i][j])

其中的local[i – 1][j] + diff就是为了避免第i天交易和第i-1天交易合并成一次交易而少一次交易收益。时间O(n),空间O(k)。

class Solution { //9ms
    public int maxProfit(int k, int[] prices) {
        if (prices.length < 2) return 0;
        if (k >= prices.length) return maxProfit(prices);//k大于天数时,就退化为II,利用贪心算法查找最大利益,k=2时,就是III的情况,使用双向动态规划
        int[] local = new int[k + 1];
        int[] global = new int[k + 1];
        for (int i = 1;i < prices.length;i ++){
            int diff = prices[i] - prices[i - 1];
            for (int j = k;j > 0;j --){
                local[j] = Math.max(global[j - 1] + Math.max(diff,0),local[j] + diff);
                global[j] = Math.max(global[j],local[j]);
            }
        }
        return global[k];
    }
    public int maxProfit(int[] prices){
        int max = 0;
        for (int i = 1;i < prices.length;i ++){
            if (prices[i] > prices[i - 1]){
                max += prices[i] - prices[i - 1];
            }
        }
        return max;
    }
}

② 在discuss中看到的。。。

class Solution { //3ms
    public int maxProfit(int k, int[] prices) {
        if (prices.length < 2 || k <= 0){
            return 0;
        }
        if (k == 1000000000){//如果不加,就不能通过OJ
            return 1648961;
        }
        int[] local = new int[k + 1];
        int[] global = new int[k + 1];
        for (int i = 0;i < prices.length - 1;i ++){
            int diff = prices[i + 1] - prices[i];
            for (int j = k;j >= 1;j --){
                local[j] = Math.max(global[j - 1] + Math.max(diff,0),local[j] + diff);
                global[j] = Math.max(local[j],global[j]);
            }
        }
        return global[k];
    }
}

转载于:https://my.oschina.net/liyurong/blog/1591061

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值