Python OpenCV学习笔记之:图像直方图均衡化

# -*- coding: utf-8 -*-
"""
图像直方图均衡化
"""
import cv2
import numpy as np
from matplotlib import pyplot as plt

img = cv2.imread('../../../../datas/images/fish.jpg',0)
# 计算处理前的直方图
hist,bins = np.histogram(img.flatten(),256,[0,256])
cdf = hist.cumsum()
cdf_normalized = cdf * hist.max()/ cdf.max()

plt.figure()
plt.plot(cdf_normalized, color = 'b')
plt.hist(img.flatten(),256,[0,256], color = 'r')
plt.xlim([0,256])
plt.legend(('cdf','histogram'), loc = 'upper left')

# 均衡化处理
cdf_m = np.ma.masked_equal(cdf,0)
cdf_m = (cdf_m - cdf_m.min())*255/(cdf_m.max()-cdf_m.min())
cdf = np.ma.filled(cdf_m,0).astype('uint8')

img2 = cdf[img]

plt.figure()
plt.subplot(121)
plt.imshow(img,'gray')
plt.subplot(122)
plt.imshow(img2,'gray')

plt.figure()
# 处理后直方图
hist,bins = np.histogram(img2.flatten(),256,[0,256])
cdf = hist.cumsum()
cdf_normalized = cdf * hist.max()/ cdf.max()

# 显示处理后直方图
plt.plot(cdf_normalized, color = 'b')
plt.hist(img.flatten(),256,[0,256], color = 'r')
plt.xlim([0,256])
plt.legend(('cdf','histogram'), loc = 'upper left')

# 使用OpenCV提供的函数
equ = cv2.equalizeHist(img)
plt.figure()
plt.subplot(121)
plt.imshow(img,'gray')
plt.subplot(122)
plt.imshow(equ,'gray')

plt.show()

转载于:https://my.oschina.net/wujux/blog/801384

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值