后缀式:
即
逆波兰式。
逆波兰式是波兰逻辑学家卢卡西维奇(Lukasiewicz)发明的一种表示
表达式的方法。这种表示方式把运算符写在运算对象的后面,例如,把a+b写成ab+,所以也称为后缀式。这种表示法的优点是根据运算对象和算符的出现次序进行计算,不需要使用括号,也便于用械实现求值。对于
表达式x:=(a+b)*(c+d),其后缀式为xab+cd+*:=。
1.1 后缀式(前缀式)转中缀式
举例:如希望将后缀式 ab*cde/-f*+ 转换为中缀式
从左向右查找运算符,找到则将该符号与前面两数结合,循环即可。
1.2 中缀式转后缀式(前缀式)
举例:请将中缀式 a * ( b *(c+d/e) - f) 转换为后缀式
首先按照运算符的优先级对所有的运算单位加括号,然后,画图将括号内符号移动到相应括号后并去除括号。BTW,这个画法没见别人用过,属于原创范畴,如有雷同,纯属偶然。另外,如果您只有一支黑色铅笔,可以考虑小括号、方括号花括号齐上阵。
至此,软考这类题目的分应该可以拿下了。