matlab 概念格 hasse建法,实值形式背景下概念格的渐进式并行构造算法

形式概念分析(Formal concept analysis)是20世纪80年代初期由德国教授R.Wille提出的一种用于发现知识的理论。形式概念分析通过构造概念格来进行数据的处理,也称概念格理论[1]。以往关于概念格的研究主要集中于经典的形式背景,即属性值为Boolean值,然而,由于现实中数据的复杂性,更多的形式背景中的属性值是区间形式的普通实值。经典的概念格主要应用于发现二值(或多值)形式背景的概念构造,因此,传统形式背景中概念格的构造方法并不适用于实值形式背景[3-4]。而实值形式背景概念格的构造存在算法复杂性大等缺陷,现阶段围绕这一类问题的研究也缺少较好的普适性,故进一步讨论实值概念格的构造具有一定的意义。Matlab已成为数值计算领域的主流工具,其拥有的并行计算工具箱(Parallel computing tool-box,PCT)和并行计算服务(Distributed computingserver,DCS)可以实现基于多处理器平台和集群平台的多种并行计算任务,利用PCT和DCS,用户无需关心多核、多处理器之间以及集群之间的底层数据通信,可以将更多的精力放在并行算法的设计,充分利用Matlab提供的数值计算模块和数据显示功能,高效便捷的完成并行计算任务[5]。经典形式背景下的建格算法并不适用于处理实值形式背景下的概念格,而串行算法在数据规模较大的情况下计算效率较低。针对实值形式背景的特点,结合经典概念格的渐进式构造思想,本文首先给出了计算实值概念格的方法;然后提出了一种实值概念格计算的渐进式构造算法,并对其进行改进,得到并行算法,应用Matlab对串、并算法进行程序的实现;最后通过数值实验对该算法的串行与并行运行效率作了对比,对该算法在特定实值条件下的并行化可行性进行了评估。1实值形式背景与实概念格1.1实集定义1[6]设R为实数集。对于μ,v∈R,称I=[μ,v]为R上的一个实区间,其中μ和v分别称为实区间I的上界和下界。如果μ>v,则称实区间I是空的,记为[,]。显然,当I=[μ,v]非空时,I就是由μ到v之间的全部实数构成的集合。对于两个实区间I1=[μ1,v1]和I2=[μ2,v2],它们的交Inter(I1,I2)满足:Inter(I1,I2)=[max(μ1,μ2),min(ν1,ν2)]定义{I1,I2}的闭包为Closure({I1,I2})={[min(μ1,μ2),max(ν1,ν2)]},Inter(I1,I2)≠[,]{I1,I2},{其他n个实区间的闭包算子可表示如下:Closure({I1,I2,…,In})=Closure({Closure({I1,I2}),…,In})在此基础上,定义两个实区间集D={I1,I2,…,Ir}和D'={I'1,I'2,…,I's}的并运算和交运算分别为D∪D'=Closure({I1,I2,…,Ir,I'1,I'2,…,I's}),D∩D'=Closure({Inter(Ii,I'j)|i=1,…,r;j=1,…,s})。定义2[6]设U={x1,x2,…,xn}是一个维度为n的对象集,A是R上所有实区间组成的集合,P(A)是A的幂集。U上的一个实集珘X通过其特征函数μ珘X:U→P(A)来定义,即μ珘X(xi)(i=1,2,…,m)均为实区间集,每个μ珘X(xi)表明了元素xi在实集珘X中的所有可能的取值。则珘X可表示为珘X=μ珘X(x1)μ珘X(x2)μ珘X(xn),,…,x1x2x{}n,并记U上所有实值构成的集合为R(U)。一般地,假设每个μ珘X(x)(x∈U)中

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值