Triangle Count

本文详细解析了一道关于从整数数组中找出能构成三角形的三边长度组合的算法题。通过排序和双指针技巧,实现了高效查找,介绍了具体实现思路与代码示例。

Given an array of integers, how many three numbers can be found in the array, so that we can build an triangle whose three edges length is the three numbers that we find?

Given array S = [3,4,6,7], return 3. They are:

[3,4,6]
[3,6,7]
[4,6,7]

Given array S = [4,4,4,4], return 4. They are:

[4(1),4(2),4(3)]
[4(1),4(2),4(4)]
[4(1),4(3),4(4)]
[4(2),4(3),4(4)]

Lintcode上的一道题目,刚开始看到并没有什么思路,仔细分析下还是可以看到解题思路的。已知三条边a,b,c,则判断它们能不能组成三角形的条件是:a + b> c&&

a + c > b && b + c > a。约束条件还是非常多的。 但是如果 a,b,c已经排序,比如a<b<c, 则只需判断a+b > c。大大简化约束。所以这题可以对数组先进行排序。

之后我们相对固定第三条边,然后用双指针进行另外两条边的扫描,寻找a + b > c的 <a,b> pair。这步其实就是Two Sum II 所要做的事情。从右往左扫第三条边,在其左边的数组用双指针查找合格pair。代码如下:

class Solution:
    # @param S: a list of integers
    # @return: a integer
    def triangleCount(self, S):
        if not S or len(S) < 3:
            return 0
        S.sort()
        res = 0
        for i in xrange(len(S)-1, 1 ,-1):
            left = 0
            right = i -1
            while left < right:
                if S[left] + S[right] > S[i]:
                    res += right - left
                    right -= 1
                else:
                    left += 1
        return res

排序时间复杂度为O(nlogn)。其后的时间复杂度为O(n^2)。所以总体的时间复杂度为O(n^2),空间复杂度为O(1)。

转载于:https://www.cnblogs.com/sherylwang/p/5563955.html

for (int cubeID = 0; cubeID < 8; ++cubeID) { getShareMCi << < gs, bs, 0, streamCompute >> > (dCacheVoxels, numFrameVoxels, dFrameVoxels, dFrameVoxelProperties, dFrameNeighborIndices, resolution, isovalue, d_point_data, d_voxel_data, d_valVoxelCount, d_triangleCount, d_effectVoxel, d_valtris_nums, MChash_table, cubeID); } MChash_table.clear(); print << <1, 1, 0, streamCompute >> > (d_valtris_nums); //curr_frameVoxelsToIndex.clear(); #ifdef MV_TRIANGLE_MESH_I clock_t t02 = clock(); MC_FUSE_CU_LOG_INFO("%s %d %s", "Average 1 time mc cal: ", t02 - t2, " ms."); #endif cudaStreamSynchronize(streamCompute); cudaMemcpyAsync(&valVoxelCount, d_valVoxelCount, sizeof(unsigned int), cudaMemcpyDeviceToHost, streamCopy); cudaMemcpyAsync(&triangleCount, d_triangleCount, sizeof(unsigned int), cudaMemcpyDeviceToHost, streamCopy); cudaMemcpyAsync(&h_effectVoxel, d_effectVoxel, sizeof(unsigned int), cudaMemcpyDeviceToHost, streamCopy); cudaStreamSynchronize(streamCopy); cudaMemcpyAsync(h_listPoint, d_point_data, triangleCount * 3 * sizeof(ListPoint), cudaMemcpyDeviceToHost, streamCopy); cudaMemcpyAsync(h_VoxelTriangle, d_voxel_data, triangleCount * sizeof(ListVoxel), cudaMemcpyDeviceToHost, streamCopy); cudaMemcpyAsync(h_valtris_nums, d_valtris_nums, valVoxelCount * sizeof(int), cudaMemcpyDeviceToHost, streamCopy); printf("%d %d %d, %d voxel num_points numFrameVoxels. triangleCount %d h_effectVoxel\n", valVoxelCount, triangleCount * 3, numFrameVoxels, triangleCount, h_effectVoxel); d_valtris_nums是有值的,为什么拷贝的h_valtris_nums 打印printf("%d %d %d %f %d %d h_valtris_nums\n", h_valtris_nums[0], h_valtris_nums[1], h_valtris_nums[2]却都是0呢
07-19
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值