1 题目
题目:三角形计数(Triangle Count)
描述:给定一个整数数组,在该数组中,寻找三个数,分别代表三角形三条边的长度,问,可以寻找到多少组这样的三个数来组成三角形?
lintcode题号——382,难度——medium
样例1:
输入: [3, 4, 6, 7]
输出: 3
解释:
可以组成的是 (3, 4, 6),
(3, 6, 7),
(4, 6, 7)
样例2:
输入: [4, 4, 4, 4]
输出: 4
解释:任何三个数都可以构成三角形,所以答案为 C(3, 4) = 4
2 解决方案
2.1 思路
首先三条边在满足a<=b<=c
的前提下,只要满足a+b>c
即可构成三角形,这样我们先对数组进行排序,使得按照位置取出来的三个数能够满足a<=b<=c
,将c通过循环进行遍历固定,再在c位置之前的子数组中找到和的值大于c的两个数即可。
2.2 时间复杂度
排序的时间复杂度O(n * log n),外层循环的时间复杂度为O(n),在子数组找两数和大于目标值的数的时间复杂度为O(n),总时间复杂度为O(n^2)。
2.3 空间复杂度
空间复杂度为O(1)。
3 源码
细节:
- 形成三角形的三边条件为(a<b<c && a+b>c)即可。
- 先进行排序,让有序取出的abc满足a<b<c,再固定c去判断a+b>c(下标遍历固定c,再two sum之前的区间)
- 若a+b比c大,则b不动,a右移的所有a+b都大于c,加入结果之后,b左移进行下一轮
- 若a+b比c小,则需要a左移,进行下一轮
C++版本:
/**
* @param S: A list of integers
* @return: An integer
*/
int triangleCount(vector<int> &S) {
// write your code here
int result = 0;
if (S.empty())
{
return result;
}
// 先排序,确保三个数的大小 a<=b<=c
sort(S.begin(), S.end());
// 固定c的位置
for (int i = 2; i < S.size(); i++)
{
int target = S.at(i);
int temp = twoSumGreater(S, 0, i - 1, target); // 找到子数组中令两数和大于目标值的结果个数
result += temp;
}
return result;
}
// left指向a,right指向b,找到令 a+b>c 的结果
int twoSumGreater(vector<int> & S, int left, int right, int target)
{
int result = 0;
while (left < right)
{
if (S.at(left) + S.at(right) <= target)
{
left++;
}
else if(S.at(left) + S.at(right) > target)
{
result = result + (right - left); // 直接将left左移的所有结果加入
right--;
}
}
return result;
}