2020年中考数学必考考点之平方差公式与因式分解习题练习
这次课程我们来为大家讲一下平方差公式相关的习题,教你在实践中快速准确地应用平方差公式进行因式分解。本次课程结束后,我们还会为大家布置相关的习题,希望家长认真监督孩子完成本次的作业。
温馨提示:本课程适用于八年级以及八年级以上的学生,更适用于即将参加2020年中考的你,如果你想进行相关的考点复习,本课程是你的最佳选择。
符号说明:b的平方记作b^2;
平方差公式因式分解相关的复习
公式一览:x^2-y^2=(x+y)(x-y);

例题讲解:
求下列各式子的值,能因式分解的要进行因式分解:
1 4a^3-a
解:原式=a(4a^2-1)=a(2a+!)(2a-1);
2 4b^4-x^2
解:原式=(2b+x)(2b-x);
3 x^2+2xy+y^2-4z^2
解:原式=(x+y)^2-(2z)^2=(x+y+2z)(x+y-2z);
4 (x+y)-(x^2-y^2)
解:原式=(x+y)-(x+y)(x-y)=(x+y)(1-x+y);
总结:以上四个题目考察学生对平方差公式的熟练掌握和理解程度,如果熟练掌握了这些题目基本上都是满分的哦。
5 (8m-6x)(8m+6x)
解:原式=(8m)^2-(6x)^2=64m^2-36x^2;
6 (根号3x+根号y)(根号3x-根号y)
解:原式=(根号3x)^2-(根号y)^2=3x^2-y^2;
总结:以上两题考察学生对平方差公式的逆用的熟练掌握能力。
7 3x^2-4y^4
解:原式=(根号3x)^2-(2y)^2=(根号3x+2y)(根号3x+2y);
总结:本题考察学生对无理根式开方的熟练掌握能力,能够快速拼凑出平方差公式从而进行快速求解。

8 计算(xyz+1)(-xyz+1)(x^2y^2z^2+1)
解:原式=(1-x^2y^2z^2)(x^2y^2z^2+1)=1-x^4y^4z^4;
本题考核学生对平方差正向展开的计算能力;
9 计算1.01x0.99的值
解:原式-(1+0.01)(1-0.01)=1-(0.01)^2=1-0.0001=0.9999;
考核学生灵活应用拼凑法求解整式乘法的能力;
10 填空:()(x-1)=1-x^2
解:1-x^2=(1+x)(1-x)=(-1-x)(x-1)
解析:本题考核学生对平方差变形公式的熟练应用,是考试中常考的题型之一。
以上10个例题,涵盖了平方差公式的所有考点,掌握后就开始自行练习吧。下面我们给出练习题:

习题练习:
求下列代数式的值或者将式子进行因十分解
1 (-1-2b)(2b-1)=______;
2 y^4-81x^4=_____;
3 x^2+y^2+(x+y)(x-y)=_____;
4 ()(x^2+b^2)=x^4-b^4=______;
5 (-x-y)(y-x)=___________;
6 (2x-1/3z)(-2x-1/3z)=_________;
7 计算1998^2-1997x1999的值;
8 (a-2b+3c)(a+2b-3c)=________;
9 (y-1/3)(y^2-1/9)(y+1/3)=______;
10 计算88x92的值,用快速方法求解(利用平方差公式相关的技巧进行计算);

思考:
1 是不是所有的因式分解都能使用平方差公式,不是请给出说明;
2 举出几个可以使用平方差公式进行快速计算的实际例子;

本次课程我们就带着大家学习到这里了,咱们下次课再见,如您有相关的疑问,请在下方留言,咱们将第一时间给以您满意的答复;