题目大意
给出由1~n组成的序列,每次可将一个区间翻转。问如何从1~n的递增序列变成给出的序列,输出操作次数以及每次操作的区间。最多翻转3次,保证有解,输出任意方案即可。
分析
我们对于每一次翻转只考虑枚举所有可能的点,即我们找出每一段连续区间的两个端点,然后枚举选取这些端点中的哪两个,之后暴力翻转这一段区间即可。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<ctime>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
int a[1100],b[5][1100],nowx[5],nowy[5],n;
inline bool check(){
int i;
for(i=2;i<=n;i++)
if(a[i]!=a[i-1]+1)return 0;
return 1;
}
inline void pr(int wh){
int i;
cout<<wh<<endl;
for(i=wh;i>0;i--)cout<<nowx[i]<<' '<<nowy[i]<<endl;
exit(0);
}
inline void dfs(int wh){
if(check())pr(wh);
if(wh==3)return;
int i,j,k;
int cnt=0;
b[wh][++cnt]=1;
for(i=2;i<n;i++)
if(abs(a[i]-a[i-1])!=1||abs(a[i]-a[i+1])!=1)
b[wh][++cnt]=i;
b[wh][++cnt]=n;
for(i=1;i<cnt;i++)
for(j=i+1;j<=cnt;j++){
nowx[wh+1]=b[wh][i],nowy[wh+1]=b[wh][j];
for(k=0;b[wh][i]+k<=b[wh][j]-k;k++)
swap(a[b[wh][i]+k],a[b[wh][j]-k]);
dfs(wh+1);
for(k=0;b[wh][i]+k<=b[wh][j]-k;k++)
swap(a[b[wh][i]+k],a[b[wh][j]-k]);
}
return;
}
int main(){
int m,i,j,k,x,y;
scanf("%d",&n);
for(i=1;i<=n;i++)scanf("%d",&a[i]);
dfs(0);
return 0;
}