1227: [SDOI2009]虔诚的墓主人
Time Limit: 5 Sec Memory Limit: 259 MBSubmit: 1083 Solved: 514
[Submit][Status][Discuss]
Description
小W 是一片新造公墓的管理人。公墓可以看成一块N×M 的矩形,矩形的每个格点,要么种着一棵常青树,要么是一块还没有归属的墓地。当地的居民都是非常虔诚的基督徒,他们愿意提前为自己找一块合适墓地。为了体现自己对主的真诚,他们希望自己的墓地拥有着较高的虔诚度。一块墓地的虔诚度是指以这块墓地为中心的十字架的数目。一个十字架可以看成中间是墓地,墓地的正上、正下、正左、正右都有恰好k 棵常青树。小W 希望知道他所管理的这片公墓中所有墓地的虔诚度总和是多少
Input
第一行包含两个用空格分隔的正整数N 和M,表示公墓的宽和长,因此这个矩形公墓共有(N+1) ×(M+1)个格点,左下角的坐标为(0, 0),右上角的坐标为(N, M)。第二行包含一个正整数W,表示公墓中常青树的个数。第三行起共W 行,每行包含两个用空格分隔的非负整数xi和yi,表示一棵常青树的坐标。输入保证没有两棵常青树拥有相同的坐标。最后一行包含一个正整数k,意义如题目所示。
Output
包含一个非负整数,表示这片公墓中所有墓地的虔诚度总和。为了方便起见,答案对2,147,483,648 取模。
Sample Input
13
0 2
0 3
1 2
1 3
2 0
2 1
2 4
2 5
2 6
3 2
3 3
4 3
5 2
2
Sample Output
HINT
图中,以墓地(2, 2)和(2, 3)为中心的十字架各有3个,即它们的虔诚度均为3。其他墓地的虔诚度为0。
所有数据满足1 ≤ N, M ≤ 1,000,000,000,0 ≤ xi ≤ N,0 ≤ yi ≤ M,1 ≤ W ≤ 100,000, 1 ≤ k ≤ 10。存在50%的数据,满足1 ≤ k ≤ 2。存在25%的数据,满足1 ≤ W ≤ 10000。
注意:”恰好有k颗树“,这里的恰好不是有且只有,而是从>=k的树中恰好选k棵
Source
O(nm)暴力:sigma(C(l(x,y),k)*C(r(x,y),k)*C(u(x,y),k)*C(d(x,y),k))((x,y)是整个地图上任意一点,l,r,u,d分别表示点(x,y)正左/右/上/下方的点数,C表示组合数)。
优化:
先将所有常青树以y坐标为第一关键字,x坐标为第二关键字,从小到大排序。对于第i棵常青树,如果第i-1棵常青树的y坐标与它相同,那么两棵常青树之间的空地的虔诚度之和为:
C(l(i-1),k)*C(r(i),k)*sigma(C(u(x),k)*C(d(x),k))(x介于第i-1~第i棵常青树之间。其中l(i-1)表示与第i-1棵常青树y坐标相同,且x坐标小于等于它的常青树数量,r(i)则表示与第i棵常青树y坐标相同,且x坐标大于等于它的常青树数量;u(x),d(x)表示点(x,y)正上/下方有多少常青树,C表示组合数)。
于是我们从左往右处理某行的某一个点时,要将树状数组中该点横坐标位置上的数进行修改
修改的值为就是现在的c(u[i],k)*c[d[i],k]减去原来的,也就是c(u[i],k)*c[d[i],k]-c(u[i]+1,k)*c[d[i]-1,k]
ps:网上有些人让ans自然溢出,可以加快速度。
我只想说NO ZUO NO DIE。
别为了速度,WA了本可以过的点,那就得不偿失了!(因为我这样干过。。。)
#include<cstdio> #include<algorithm> using namespace std; typedef long long ll; const ll mod=2147483648LL; const int N=2e5+5; struct node{ int x,y; }a[N]; int n,m,w,K,cnt,H[N],h[N],l[N],now[N]; ll ans,f[N],C[N][11];//WA*1 看成50%的数据了 void getc(){ C[0][0]=1; for(int i=1;i<=w;i++){ C[i][0]=1; for(int j=1;j<=min(K,i);j++){ C[i][j]=(C[i-1][j]+C[i-1][j-1])%mod; } } } int find(int x){ int l=1,r=cnt,mid; while(l<=r){ mid=l+r>>1; if(H[mid]==x) return mid; if(H[mid]>x) r=mid-1; else l=mid+1; } } int lowbit(int x){ return x&-x; } void updata(int x,ll val){ for(int i=x;i<=cnt;i+=lowbit(i)) f[i]=(f[i]+val)%mod; } ll query(int x){ ll res=0; for(int i=x;i;i-=lowbit(i)) res=(res+f[i])%mod; return res; } bool cmp(const node &a,const node &b){ return a.y==b.y?a.x<b.x:a.y<b.y; } int main(){ scanf("%d%d%d",&m,&n,&w); for(int i=1;i<=w;i++){ scanf("%d%d",&a[i].x,&a[i].y); H[++cnt]=a[i].x;H[++cnt]=a[i].y; } sort(H+1,H+cnt+1); scanf("%d",&K);getc(); sort(a+1,a+w+1,cmp); for(int i=1;i<=w;i++) h[find(a[i].y)]++,l[find(a[i].x)]++; int lf=0; for(int i=1,d;i<=w;i++){ if(i>1&&a[i-1].y==a[i].y){ lf++; ll t1=query(find(a[i].x)-1)-query(find(a[i-1].x)); ll t2=C[lf][K]*C[h[find(a[i].y)]-lf][K];//WA*2 忘了-1 ans+=t1*t2; ans%=mod; } else lf=0; d=find(a[i].x);now[d]++; ll change=(C[now[d]][K]*C[l[d]-now[d]][K]-C[now[d]-1][K]*C[l[d]-now[d]+1][K])%mod; //c(u[i],k)*c[d[i],k]-c(u[i]+1,k)*c[d[i]-1,k] updata(d,change); } if(ans<0) ans+=mod; printf("%d",(int)ans); return 0; }