infinity_edge
码龄8年
关注
提问 私信
  • 博客:34,951
    34,951
    总访问量
  • 61
    原创
  • 1,598,215
    排名
  • 18
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2016-08-29
博客简介:

infinity_edge的博客

博客描述:
同学,你听说过cuichen吗?
查看详细资料
个人成就
  • 获得12次点赞
  • 内容获得12次评论
  • 获得36次收藏
  • 代码片获得126次分享
创作历程
  • 11篇
    2018年
  • 22篇
    2017年
  • 28篇
    2016年
成就勋章
TA的专栏
  • bzoj
    29篇
  • codeforces
    5篇
  • 校内模拟赛
    6篇
  • 洛谷
    21篇
  • hdu
  • usaco
    2篇
  • NOIP
    2篇
  • 学习笔记
    3篇
  • 游记
    1篇
  • 杂项
    1篇
  • ACM
    3篇
  • UOJ
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

186人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

「UOJ224」「NOI2016」旷野大计算

题目描述随着人类计算机技术的发展,计算机的能力不断提升,让跳蚤国王非常羡慕。终于有一天,跳蚤国王发布政令:大力发展跳蚤国的计算机产业!然而,跳蚤国尚未进行工业革命,无法制造出电子计算机所需的元器件。但是跳蚤国王想出了一个绝妙的想法:把每只跳蚤作为一个计算节点,每只跳蚤只完成一个特定的小任务。跳蚤国王带领 nnn 只跳蚤来到了一片旷野上,把跳蚤作为计算节点在旷野上排列好,并编号为 111...
原创
发布博客 2018.06.30 ·
1236 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

「BZOJ4654」「NOI2016」国王饮水记

题目描述跳蚤国有 nnn 个城市,伟大的跳蚤国王居住在跳蚤国首都中,即 111 号城市中。跳蚤国最大的问题就是饮水问题,由于首都中居住的跳蚤实在太多,跳蚤国王又体恤地将分配给他的水也给跳蚤国居民饮用,这导致跳蚤国王也经常喝不上水。于是,跳蚤国在每个城市都修建了一个圆柱形水箱,这些水箱完全相同且足够高。一个雨天后,第 iii 个城市收集到了高度为 hihih_i 的水。由于地理和天气因素...
原创
发布博客 2018.06.30 ·
469 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

「BZOJ4651」「NOI2016」 网格

题目描述跳蚤国王和蛐蛐国王在玩一个游戏。他们在一个 nnn 行 mmm 列的网格上排兵布阵。其中的 ccc 个格子中 (0≤c≤nm)(0≤c≤nm)(0 \leq c \leq nm),每个格子有一只蛐蛐,其余的格子中,每个格子有一只跳蚤。我们称占据的格子有公共边的两只跳蚤是相邻的。我们称两只跳蚤是连通的,当且仅当这两只跳蚤相邻,或存在另一只跳蚤与这两只跳蚤都连通。现在,蛐蛐...
原创
发布博客 2018.06.30 ·
561 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

「LOJ2267」「SDOI2017Round2」龙与地下城

题目描述小 Q 同学是一个热爱学习的人,但是他最近沉迷于各种游戏,龙与地下城就是其中之一。 在这个游戏中,很多场合需要通过掷骰子来产生随机数,并由此决定角色未来的命运,因此骰子堪称该游戏的标志性道具。骰子也分为许多种类,比如 4 面骰、6 面骰、8 面骰、12 面骰、20 面骰,其中 20 面骰用到的机会非常多。当然,现在科技发达,可以用一个随机数生成器来取代真实的骰子,所以这里认为骰子就...
原创
发布博客 2018.04.10 ·
508 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

从球盒问题到第二类斯特林数

斯特林数是组合数学中一类特殊的数,有着广泛的应用,本文主要讨论第二类斯特林数的推导,性质与应用。从球盒问题说起组合问题最基础的模型就是球盒问题了。球盒问题即为 nnn 个球放入 mmm 个盒子的方案数。众所周知,球盒问题有 2×2×2=82×2×2=82 \times 2 \times 2 = 8 种类型,分别为:球相同,盒子相同,不可以有空盒子。球相同,盒子相同,可以有空盒子...
原创
发布博客 2018.03.25 ·
1538 阅读 ·
3 点赞 ·
0 评论 ·
12 收藏

「BZOJ4869」「SHOI2017」相逢是问候

题目描述 Informatik verbindet dich und mich. 信息将你我连结。B 君希望以维护一个长度为 nnn 的数组,这 个数组的下标为从 111 到 nnn 的正整数。 一共有 mmm 个操作,可以分为两种:0 l r :表示将第 lll 个到第 rrr 个数 {al,al+1,...,ar}{al,al+1,...,ar}\{ a_l,a_...
原创
发布博客 2018.03.07 ·
409 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

k次幂前缀和与拉格朗日插值

引入先看一道例题: 给定 n,kn,kn, k ,求: ∑i=1nik∑i=1nik\sum_{i = 1}^n i^k 对大质数取模。 n≤109n≤109n \leq 10^9 。 Part 1:k≤2k≤2k \leq 2 。 Part 2:k≤300k≤300k \leq 300 。 Part 3:k≤2000k≤2000k \leq 2000 。 Part...
原创
发布博客 2018.03.06 ·
2510 阅读 ·
1 点赞 ·
2 评论 ·
8 收藏

「备战PKUWC2018」The 2017 ACM-ICPC Asia Shenyang Regional Contest 「HDU6217-6229」

感觉这场比赛质量不是很高,不是打表找规律就是毒瘤坑点,还有高精度(为什么不能交 Python),(还是我比较弱,做不了后面的神题)比赛结果: A - BBP Formula坑。B - Bridge题意:有一个 2×N2 \times N 的网格图,相邻的格子之间连边,显然最开始共有 3×N−23 \times N - 2 条边。有 MM 次操作,每次操作都是形如 op
原创
发布博客 2018.01.18 ·
988 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

「备战PKUWC2018」2016-2017 ACM-ICPC CHINA-Final

这场比赛好难啊。。。 最终成绩: 如果不算 Hash_Table 自己切掉的 J 题,自己还能在区域赛搞个 Ag?Problem A. Number Theory Problem题意:求有多少小于 2N2^N 且形如 2k−12^k - 1 且能被 77 整除的数。 题解:签到题。printf("%d
, n / 3); Hash_Table’s Code:#include<bits/
原创
发布博客 2018.01.17 ·
1631 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

「备战PKUWC2018」2017-2018 ACM-ICPC, Asia Daejeon Regional Contest

这些题很不错,一股劣质NOIP模拟赛的味道,以后出题可以拿来用(雾)A. Broadcast Stations坑。B. Connect3题意:两个人玩在一个 4×44 \times 4 的方格里进行的游戏。黑方先手,轮流在格子里放棋子。一个格子能被放棋子当且仅当该格下方所有格子都放满了棋子。一方获胜的条件是当且仅当存在横向,纵向或斜向的三个格子,都放着该色棋子。告诉黑方第一次放
原创
发布博客 2018.01.16 ·
2404 阅读 ·
1 点赞 ·
2 评论 ·
4 收藏

「K-D Tree 膜板」「BZOJ2648」SJY摆棋子

Description这天,SJY显得无聊。在家自己玩。在一个棋盘上,有 NN 个黑色棋子。他每次要么放到棋盘上一个黑色棋子,要么放上一个白色棋子,如果是白色棋子,他会找出距离这个白色棋子最近的黑色棋子。此处的距离是 曼哈顿距离 即 |x1−x2|+|y1−y2||x1-x2|+|y1-y2| 。现在给出 N≤500000N \leq 500000 个初始棋子。和 M≤500000M \le
原创
发布博客 2018.01.16 ·
316 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

「BZOJ3561」DZY Loves Math VI

Description给定正整数 n,mn,m 。求 ∑i=1n∑j=1mlcm(i,j)gcd(i,j)\sum_{i = 1}^{n}\sum_{j = 1}^{m}lcm(i, j)^{gcd(i, j)}Input一行两个整数n,m。Output一个整数,为答案模 109+710^9 + 7 后的值。Sample Input5 4Sample Output424HINT数据规模:1≤n,m
原创
发布博客 2017.12.27 ·
259 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

「BZOJ3052」「WC2013」糖果公园

DescriptionCandyland 有一座糖果公园,公园里不仅有美丽的风景、好玩的游乐项目,还有许多免费糖果的发放点,这引来了许多贪吃的小朋友来糖果公园玩。糖果公园的结构十分奇特,它由 nn 个游览点构成,每个游览点都有一个糖果发放处,我们可以依次将游览点编号为 11 至 nn 。有 n−1n−1 条双向道路连接着这些游览点,并且整个糖果公园都是连通的,即从任何一个游览点出发都可以通过这些道路
原创
发布博客 2017.12.26 ·
359 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

「BZOJ1095」「ZJOI2007」Hide 捉迷藏

Description  Jiajia 和 Wind 是一对恩爱的夫妻,并且他们有很多孩子。某天,Jiajia 、Wind 和孩子们决定在家里玩捉迷藏游戏。他们的家很大且构造很奇特,由 NN 个屋子和N−1N-1 条双向走廊组成,这 N−1N-1 条走廊的分布使得任意两个屋子都互相可达。游戏是这样进行的,孩子们负责躲藏,Jiajia 负责找,而 Wind 负责操纵这 NN 个屋子的灯。在起初的时候,
原创
发布博客 2017.12.20 ·
308 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

「BZOJ3930」「CQOI2015」选数

Description我们知道,从区间 [L,H][L,H][L,H]( LLL 和 HHH 为整数)中选取 NNN 个整数,总共有 (H−L+1)N(H−L+1)N(H-L+1)^N 种方案。小 zzz 很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的 NNN 个整数都求一次最大公约数,以便进一步研究。然而他很快发现工作量太大了,于是向你寻求帮助。你的任务很简单,小 zzz 会告...
原创
发布博客 2017.12.18 ·
304 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

「BZOJ4332」「JSOI2012」分零食

Description这里是欢乐的进香河,这里是欢乐的幼儿园。 今天是 222 月 141414 日,星期二。在这个特殊的日子里,老师带着同学们欢乐地跳着,笑着。校长从幼儿园旁边的小吃店买了大量的零食决定分给同学们。听到这个消息,所有同学都安安静静地排好了队,大家都知道,校长不喜欢调皮的孩子。 同学们依次排成了一列,其中有 AAA 位小朋友,有三个共同的欢乐系数 O,SO,SO,S 和...
原创
发布博客 2017.12.11 ·
613 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

「BZOJ3509」「CodeChef」 COUNTARI

Description给定一个长度为 NN 的数组 AA,求有多少对 i,j,ki, j, k (1≤i<j<k≤N)(1 \leq i < j < k \leq N) 满足 Ak−Aj=Aj−AiA_k-A_j=A_j-A_i 。Input第一行一个整数 NN 。 接下来一行 NN 个数AiA_i 。Output一行一个整数。Sample Input103 5 3 6 3 4 10 4 5 2
原创
发布博客 2017.12.07 ·
286 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

「BZOJ4004」「JLOI2015」装备购买

题目描述脸哥最近在玩一款神奇的游戏,这个游戏里有 nn 件装备,每件装备有 mm 个属性,用向量 zi(a1,…,aj,…,am)z_i(a_1 ,\dots, a_j ,\dots, a_m) 表示 (1≤i≤n;1≤j≤m)(1 \leq i \leq n; 1 \leq j \leq m),每个装备需要花费 cic_i,现在脸哥想买一些装备,但是脸哥很穷,所以总是盘算着怎样才能花尽量少的钱买尽
原创
发布博客 2017.12.05 ·
345 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

「BZOJ2115」「WC2011」 Xor

DescriptionInput第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目。 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边。 图中可能有重边或自环。Output仅包含一个整数,表示最大的XOR和(十进制结果),注意输出后加换行回车。Sample Input5 7 1 2 2 1 3 2 2 4 1 2 5
原创
发布博客 2017.12.04 ·
267 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

填坑待补 线性基学习笔记

经过两周晚自习的不懈努力(颓废),我终于看完《线代》前四章辣!这东西最直观的好处还是理解了线性基这个东西,(再也不用背板子辣),有空补一下学习笔记qwq
原创
发布博客 2017.12.03 ·
237 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏
加载更多